GUI — What next?

Basic Programming in Python

Sebastian Hoffner Aline Vilks
Wed, 28 June 2017

User interfaces

How does the user interact with your code?

= Command line interface (CLI)
= Graphical user interface (GUI)

There are many more fine-grained definitions and notions!

Command line interfaces

= |ssue command after command
= Mostly used inside the terminal
= Examples: Shell, Python, Text adventures, ...

Graphical user interfaces

= Event driven
= Render windows, buttons, etc.

= Examples: spyder, webbrowsers, office programs. ..

no
Q el
register listeners any events? notify listeners
\yes/w

What events do you think can happen?

Keyboard inputs/Mouse Inputs

= Opening, Closing, Minimizing, Maximizing
= Screen updates

Calculation results

= High complexity and flexibility needed!

Don’t reinvent the wheel

= Tkinter
] Qt

= native solutions

2017-07-03

GUI — What next?

L Don’t reinvent the wheel

There are many GUI frameworks. The most common one in Python is
Tkinter.

Tkinter is just the Python “translation” of Tcl/Tk, which can be found
here: https://tcl.tk/man/tcl8.5/TkCmd/contents.htm

= Partial documentation:
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html.

= Introduction to Tkinter: http://effbot.org/tkinterbook/

= Some example codes: https://python-
textbok.readthedocs.io/en/1.0/Introduction_to_ GUI_Programming.html

= Official documentation: https://docs.python.org/3/library/tk.html

Redraw

GUIs need to redraw changes, e.g. a button press:

®®® A simple GUI 000 A simple GUI
Close

Redraw demo

File: button_only.py

from tkinter import Tk, Button
class SimpleWindow:

def __init__(self, root):
self.root = root
root.title("A simple GUI")

self.close_button = Button(root, text="Close",
command=root.quit)

self.close_button.pack()

if __name__ == '__main__"':
root = Tk()
SimpleWindow(root)

root.mainloop ()
root.destroy()

10

2017-07-03

GUI — What next?

L Redraw demo

Tk () creates the window (the “root” element), mainloop runs the event
loop and handles events.

Since it runs indefinitely, it also keeps the program from closing!

The Button can close the program (quit on the root element).

Redraw: A tree approach

button

= Each element has a parent (except root).
= Each element knows its children.

Why is this useful?

11

2017-07-03

GUI — What next?

L Redraw: A tree approach

Using a tree is useful because on updates of an element only that element

and its children need to be redrawn.

The tree GUI

File: tree_example.py

import tkinter as tk
class TreeWindow:

def __init__(self, root):
self.root = root
root.title("The tree example GUI")

self.framel = tk.Frame(root, border=4, relief=tk.SUNKEN)
self.framel.pack(fill=tk.X, padx=5, pady=5)
self.frame2 = tk.Frame(root, border=4, relief=tk.SUNKEN)
self.frame2.pack(fill=tk.X, padx=5, pady=5)

self.close_button = tk.Button(self.framel, text="Close", command=root.quit)
self.close_button.pack()

self.do_nothing = tk.Button(self.frame2, text="Do nothing")
self.do_nothing.pack()

self.label = tk.Label(self.frame2, text="This is a label.")
self.label.pack()

if __name__ == '__main__':
root = tk.Tk()
TreeWindow (root)

root.mainloop()
root.destroy()

12

2017-07-03

GUI — What next?

LThe tree GUI

The elements (or “Widgets") used here are:

= Button: A button to click
= Label: Contains descriptions text
= Frame: Groups together different elements

The tree GUI

Buttons and event callbacks

def print_action():
print('Hello World')

tk.Button(root, text="Print!", command=print_action)

13

2017-07-03

GUI — What next?

L_Buttons and event callbacks

Buttons take a callback function.

Whenever you click a button, the function is executed.

tk.Label(root, text='This is static label text')

14

Changing label texts

File: update_label.py

import tkinter as tk
class ToggleWindow:

def __init__(self, root):
root.title("Updating a label")
self.toggle_button = tk.Button(root, text="Toggle", command=self.toggle)
self.toggle_button.pack()

self.label_text = tk.StringVar()
self.label_text.set('Hello!')

self.label = tk.Label(root, textvariable=self.label_text)
self.label.pack()

def toggle(self):
if self.label_text.get() == 'Hello!':
self.label_text.set('Bye!')
else:
self.label_text.set('Hello!')

if __name__ == '__main__':
root = tk.Tk()
ToggleWindow (root)

root.mainloop()
root.destroy()

15

2017-07-03

GUI — What next?

LChanging label texts

tk.StringVar (and others: IntVar, DoubleVar) wrap Python data into
a format Tcl/Tk can understand. They allow to update components if you
change their values.

Note that you need to change the argument name from text for the static

solution to textvariable.

Organizing interface components: Layout management

Noticed the pack call everywhere?

label = tk.Label(root, text='Some label')
label.pack()

It registers the widget with the geometry manager

16

2017-07-03

GUI — What next?

LOrg;anizing interface components: Layout
management

http://infohost.nmt.edu/tcc/help/pubs/tkinter /web /layout-mgt.html

The geometry manager determines where layout components need to be
placed. You just need to tell it what to include (and in which relations)

and it will do all the pixel level math for you.

Layout management

More common than the pack() method is grid():

label = tk.Label(root, text='Some label in the second row'.

label.grid(row=1, column=0, columspan=3)

17

ayout management example

File: grid_example.py

import tkinter as tk

class GridWindow:

def __init__(self, root):
root.title("The tree example GUI")

self.label = tk.Label(root, text='Some label in the second row')
self.label.grid(row=1, column=0, columnspan=3)

self.close_button = tk.Button(root, text="Close", command=root.quit)
self.close_button.grid(row=0, column=1, columnspan=2)
self.do_nothing = tk.Button(root, text="Do nothing")
self.do_nothing.grid(row=0, column=0)

if __name__ == '__main__':
root = tk.Tk()
GridWindow(root)

root.mainloop()
root.destroy()

18

Combing everything we learned

In the accompanying zip there is an example project, iris_viz.

It contains a lot of things we discussed during the lecture:

File 1/0: It downloads the iris data set if it's not available
= Plotting: It allows to plot iris data

= GUIs

= Error handling and documentation

Some examples are on the next slides, but we will skip those as I'll

show it in the code.

19

try:
with open('iris.data', 'r') as iris_file:
data = iris_file.read()
except FileNotFoundError:
url = 'https://archive.ics.uci.edu/ml/machine-learning:
data = requests.get(url).text
with open('iris.data', 'w') as iris_file:

iris_file.write(data)

20

Plotting

def update_plot(self):
axes = self.figure.gca()
axes.clear ()

axes.set_title('Iris data')

x = self._x_selection.get()
y = self._y_selection.get()
axes.set_xlabel(self.labels[x] + ' in cm')
axes.set_ylabel(self.labels[y] + ' in cm')

for cl, col in zip(list(set(d[4] for d in self.data)),
['orange', 'green', 'blue']):
axes.scatter (*zip(*((d[x], d[yl) for d in self.data if d[4] == cl)),

color=col, label=cl)

axes.legend ()

21

for row, label in enumerate(self.labels[:-1]):

radio = tk.Radiobutton(self.frame_x, variable=self._x_selection,
value=row, text=label,
command=self.update_plot)
radio.grid(row=row, column=1, sticky=tk.W)

22

Error handling

def maybe_float(v):
try:
return float(v)
except ValueError:

return v

23

You have seen what you can build with all you know now. It is time
to do your own projects!

24

What we covered

= Variables, functions, classes, modules, packages
= Collections

= Reading and writing files

= Downloading data, parsing data, regex

= Math, statistics, plotting

= Times, dates

= GUI programming

= and more

25

What we did not cover — and where to find it

= Inheritance (Computer Science B)

= Multithreading (Computer Science B)

= Numpy (Neuroinformatics, Machine Learning, Computer
Vision)

= Software architectures, project design (Software engineering)

= System architecture, hardware (Computer Science C)

= Algorithms (Computer Science D, many other classes)

= Databases (Database systems)

26

Stay sharp and keep going

Program. The best kind of learning is learning by doing.

Talk with other programmers; read other programs. This
is more important than any book or training course.

Learn at least a half dozen programming languages.

Peter Norvig: 21 days!

http://norvig.com/21-days.html
27

http://norvig.com/21-days.html

Challenges to improve your skills

https://github.com/karan/Projects Small functions up to
medium sized projects: Fibonacci sequence to RSS
readers

https://projecteuler.net/ Lots of math problems, e.g. find the
sum of the first 1000 prime numbers

http://natureofcode.com/book/ An introduction to more
scientific programming (math, simulations, ...) than
this class

28

= |f you just need Python for some data analyses, install numpy
and get started!

= If you enjoyed the class, try to join “Scientific Programming in
Python” the next time it's offered.

= If you want to dive deeper into programming, learn other
programming languages. Java, C++, Prolog, Haskell, Lisp,
there are many many many more.

= Join next week's lecture in 93/E42 to see all awesome projects!

29

2017-07-03

GUI — What next?

LMy advice

For numpy, definitely checkout these awesome articles:

» https://docs.scipy.org/doc/numpy-
1.12.0/reference/arrays.indexing.html
= https://scipy.github.io/old-wiki/pages/EricsBroadcastingDoc

You don't need to master other programming languages, but it helps to
get away from “Syntax” and start thinking about “Semantics” of code,
you will become better at generalizing ideas and concepts instead of

focusing on a particular parenthesis or bracket.

References

30

