
Dates, Documentation
Basic Programming in Python

Sebastian Höffner Aline Vilks
Wed, 14 June 2017

1

Date

How do you write down a date? How do you write it for a journal?
A diary? A presentation?

2

Some date examples

(roughly “now”, give or take a few minutes)

• Wednesday, June 14, 2017
• 14. June 2017
• 2017-06-14
• 06/14/2017
• 6/14/17
• 2017-06-14T14:17:42+02:00
• 1497442662
• 2017164
• Wednesday, June 1, 2017

Which ones can you read? Which ones do you know?
3

Date ambiguity problems

08/07/06

Is this July, 8th? Or August, 7th? Or maybe July, 6th?

4

Endianness

Endianness describes what the first component is:

Little endian: Day - Month - Year (e.g. Germany: 14. Juni 2017)

Middle endian: Month - Day - Year (e.g. US: 7/14/2017)

Big endian: Year - Month - Day (e.g. ISO 8601: 2017-07-14)

5

Date standards

To avoid confusion, many standards for dates and times exist.

Important are:

• ISO 8601
• UNIX Timestamp
• RFC 3339
• RFC 5322

For the homework sheets we use RFC 5322. Today we will focus on
ISO 8601 and Timestamps.

6

Date standards

Figure 1: ISO 8601 was published on 06/05/88 and most recently
amended on 12/01/04. (Munroe 2013) 7

When do you need dates?

“We didn’t use dates so far, why should we bother?”

8

Date applications

• Birthdays
• Calendars / Schedules
• Timeseries data
• Transaction management
• Identification
• Business transactions
• . . .

9

Dates in Python

import datetime

today = datetime.date.today()
print(today)
print(repr(today))
now = datetime.datetime.now()
print(now)
print(repr(now))

Output:

2017-06-14
datetime.date(2017, 6, 14)
2017-06-14 12:35:37.672870
datetime.datetime(2017, 6, 14, 12, 35, 37, 672870) 10

Specific date

from datetime import date

bday = date(1991, 8, 21)
print(bday)

Output:

1991-08-21

11

Infos about dates

from datetime import date

bday = date(1991, 8, 21)
print(bday.weekday())
print(bday.isoweekday()) # Wait, what day is it now?

Output:

2
3

12

Infos about dates

from datetime import date

bday = date(1991, 8, 21)
print(bday.weekday())
print(bday.isoweekday()) # Wait, what day is it now?

Output:

2
3

20
17

-0
6-

14
Dates, Documentation

Infos about dates

weekday() starts with Monday as 0, the ISO standard (isoweekday())
with Monday as 1. So this is Wednesday.

Formatting outputs

There are a lot of formatting options1:
from datetime import datetime

now = datetime.now()
print(now)
print(now.strftime('%a, %d. %b %Y'))
print(now.strftime('%c'))
print(now.strftime('%Z %X %f %j')) # What?

Output:

2017-06-14 12:35:37.775111
Wed, 14. Jun 2017
Wed Jun 14 12:35:37 2017
12:35:37 775111 165

1https://docs.python.org/3.6/library/datetime.html#strftime-and-strptime-
behavior

13

Formatting outputs

There are a lot of formatting options1:
from datetime import datetime

now = datetime.now()
print(now)
print(now.strftime('%a, %d. %b %Y'))
print(now.strftime('%c'))
print(now.strftime('%Z %X %f %j')) # What?

Output:

2017-06-14 12:35:37.775111
Wed, 14. Jun 2017
Wed Jun 14 12:35:37 2017
12:35:37 775111 165

1https://docs.python.org/3.6/library/datetime.html#strftime-and-strptime-
behavior20

17
-0

6-
14

Dates, Documentation

Formatting outputs

strftime can be remembered as “string format of time”.

The weird ones are:

• %Z: Timezone. Not present here.
• %X: The current time.
• %f: The current milliseconds.
• %j: The current day of the year.

Formatting rules

The formatting rules follow the standards of the programming
language C.

Format Meaning Example

%Y 4-digit year 1991, 2017
%y 2-digit year 91, 17
%m 2-digit month 01, 10, 12
%b Abbreviated month Mar, Aug
%B Month March, April (oh! You might see “März”)
%H Hours (24 h) 08, 12, 16
%M Minutes 09, 14, 34
%S Seconds 04, 43, 59
%a Abbreviated weekday Mon, Tue
%c Locale default Tue Jun 13 20:54:04 2017

14

Formatting rules

The formatting rules follow the standards of the programming
language C.

Format Meaning Example

%Y 4-digit year 1991, 2017
%y 2-digit year 91, 17
%m 2-digit month 01, 10, 12
%b Abbreviated month Mar, Aug
%B Month March, April (oh! You might see “März”)
%H Hours (24 h) 08, 12, 16
%M Minutes 09, 14, 34
%S Seconds 04, 43, 59
%a Abbreviated weekday Mon, Tue
%c Locale default Tue Jun 13 20:54:04 201720

17
-0

6-
14

Dates, Documentation

Formatting rules

This list is not exhaustive, it just contains some important ones.

Locale can be roughly seen as you computers language and location
settings.

Formatting rules example: Locale

Try it out!

from datetime import datetime

print(datetime.now().strftime('%c'))

Output:

Wed Jun 14 12:35:37 2017

Use strftime(...) to create the same output as %c did here.
(You can try your own at home, if it differs)

15

Formatting rules example: Locale

from datetime import datetime

now = datetime.now()
print(now.strftime('%c'))
print(now.strftime('%a %b %d %H:%M:%S %Y'))

Output:

Wed Jun 14 12:35:37 2017
Wed Jun 14 12:35:37 2017

16

Formatting rules example: Locale

from datetime import datetime
import locale

locale.setlocale(locale.LC_ALL, 'de_DE')

now = datetime.now()
print(now.strftime('%c'))
print(now.strftime('%a %b %d %H:%M:%S %Y'))

Output:

Mi 14 Jun 12:35:37 2017
Mi Jun 14 12:35:37 2017

17

Formatting rules example: ISO Time

An ISO 8601 time looks like this:

2017-10-02T08:12:34

Can you create a format to print the date and time like this?

18

Formatting rules example: ISO Time

from datetime import datetime

print(datetime.now().strftime('%Y-%m-%dT%H:%M:%S'))

Output:

2017-06-14T12:35:37

19

ISO formatting

from datetime import datetime

someday = datetime(2015, 7, 28, 21, 32, 12)
print(someday.isoformat())

Output:

2015-07-28T21:32:12

20

Switching sides – date parsing

Last week’s homework discussed string parsing. For dates we can do
the same:

from datetime import datetime

parsed = datetime.strptime('Wed Jun 14 14:47:12 2017',
'%a %b %d %H:%M:%S %Y')

print(parsed.isoformat())

Output:

2017-06-14T14:47:12

21

Switching sides – date parsing

Last week’s homework discussed string parsing. For dates we can do
the same:

from datetime import datetime

parsed = datetime.strptime('Wed Jun 14 14:47:12 2017',
'%a %b %d %H:%M:%S %Y')

print(parsed.isoformat())

Output:

2017-06-14T14:47:1220
17

-0
6-

14
Dates, Documentation

Switching sides – date parsing

Analogue to strftime, strptime stands for string parse time.

Calculating with dates

• How many minutes are between 14:35 and 17:22?
• How many days are between 2000-02-28 and 2000-03-01?
• How many days are between 2100-02-28 and 2100-03-01?
• What date is 231 days from now?
• How many weeks are between 2017-04-03 and 2017-07-08?

(i.e. how many lectures do we have?)

22

Calculating with dates

• How many minutes are between 14:35 and 17:22?

from datetime import datetime

datetime.time does not allow math, so we use datetime
a = datetime(2017, 6, 14, 14, 35)
b = datetime(2017, 6, 14, 17, 22)
print(b - a)

Output:

2:47:00

23

Calculating with dates

• How many days are between 2000-02-28 and 2000-03-01?
• How many days are between 2100-02-28 and 2100-03-01?

from datetime import datetime

a, b = datetime(2000, 2, 28, 23, 59), datetime(2000, 3, 1)
c, d = datetime(2100, 2, 28, 23, 59), datetime(2100, 3, 1)

print((b - a).days) # leap year
print((d - c).days) # no leap year

Output:

1
0

24

Calculating with dates

• What date is 231 days from now?

from datetime import datetime, timedelta

now = datetime.now()
days231 = timedelta(days=231)
print(now + days231)

Output:

2018-01-31 12:35:38.094106

25

Calculating with dates

• How many weeks are between 2017-04-03 and 2017-07-08?
(i.e. how many lectures do we have?)

import math
from datetime import datetime, timedelta

begin = datetime(2017, 4, 3)
end = datetime(2017, 7, 8)

print(math.ceil((end - begin) / timedelta(weeks=1)))

Output:

14

26

Other date formats

Humans use other date formats quite often:

• tomorrow
• 5 minutes ago
• next week
• Saturday

We can not easily parse these with datetime.

27

Other date formats

pip install parsedatetime installs a neat library for this.

import parsedatetime as pdt

cal = pdt.Calendar()
time_struct, parse_status = cal.parse("tomorrow")

print(time_struct)
print(parse_status)

Output:

time.struct_time(tm_year=2017, tm_mon=6, tm_mday=15, tm_hour=9, tm_min=0, tm_sec=0, tm_wday=3, tm_yday=166, tm_isdst=-1)
1

28

Other date formats

import parsedatetime as pdt

cal = pdt.Calendar()
time_struct, parse_status = cal.parse("hello")

print(time_struct) # now
print(parse_status) # unsuccessful

Output:

time.struct_time(tm_year=2017, tm_mon=6, tm_mday=14, tm_hour=12, tm_min=35, tm_sec=38, tm_wday=2, tm_yday=165, tm_isdst=1)
0

29

Other date formats

from datetime import datetime
import parsedatetime as pdt

cal = pdt.Calendar()
min5 = cal.parse("5 minutes ago")[0]
nweek = cal.parse("next week")[0]
saturday = cal.parse("saturday")[0]

print(datetime.now().isoformat())
print(datetime(*min5[:6]).isoformat())
print(datetime(*nweek[:6]).isoformat())
print(datetime(*saturday[:6]).isoformat())

Output:

2017-06-14T12:35:38.328256
2017-06-14T12:30:38
2017-06-21T09:00:00
2017-06-17T12:35:38

30

Measuring times

In many cases we don’t need full dates:

• Program execution times
• Download times
• Racing times
• . . .

31

time module

import time

print(time.time())

Output:

1497436538.3625002

32

time.time()

time.time() gives UNIX timestamps in seconds

import time

print(time.time())

Output:

1497436538.393186

33

time.time()

time.time() gives UNIX timestamps in seconds

import time

print(time.time())

Output:

1497436538.393186

20
17

-0
6-

14
Dates, Documentation

time.time()

The seconds are exact, everything in between depends on the system.
However, for most things that’s enough.

UNIX timestamp

The UNIX time (or POSIX time) starts at

January 1st, 1970, 00:00:00 UTC

time.time() tells us how many seconds passed since then2.

2Almost. There’s a concept of leap seconds which is not accounted for in
Python. Check out https://youtu.be/-5wpm-gesOY for entertaining info.

34

Execution time

Most commonly we use time.time() to measure execution times.

import time

start = time.time()
time.sleep(.3) # do something (here: nothing)
end = time.time()

print(end - start)

Output:

0.3051440715789795

35

Execution time

Most commonly we use time.time() to measure execution times.

import time

start = time.time()
time.sleep(.3) # do something (here: nothing)
end = time.time()

print(end - start)

Output:

0.305144071578979520
17

-0
6-

14
Dates, Documentation

Execution time

Important applications are: download times, complex computations,
simulations, computer games, . . .

time.sleep(...) lets your program sleep for roughly the number of
seconds passed to it.

Benchmarking functions

import timeit

print(timeit.timeit("123 + 456"))

Output:

0.01219953503459692

36

Benchmarking functions

import timeit

print(timeit.timeit("123 + 456"))

Output:

0.01219953503459692

20
17

-0
6-

14
Dates, Documentation

Benchmarking functions

timeit runs your function multiple times and calculates some statistics
about it.

This can help you figure out which functions are fast, which ones are slow,
etc.

Benchmarking functions

import timeit

def add(a, b):
return a + b

print(timeit.timeit("add(123, 456)",
setup="from __main__ import add"))

Output:

0.11900999705540016

37

Benchmarking functions

import timeit

def add(a, b):
return a + b

print(timeit.timeit("add(123, 456)",
setup="from __main__ import add"))

Output:

0.11900999705540016

20
17

-0
6-

14
Dates, Documentation

Benchmarking functions

It requires a little bit more work to test your own functions: You need
some setup to import them.

Benchmarking functions

You can also run the timeit tool from the command line:

python -m timeit '123 + 456'

Output:

100000000 loops, best of 3: 0.0128 usec per loop

38

Benchmarking functions

You can also run the timeit tool from the command line:

python -m timeit '123 + 456'

Output:

100000000 loops, best of 3: 0.0128 usec per loop

20
17

-0
6-

14
Dates, Documentation

Benchmarking functions

Measure the time 100,000,000 times (sometimes fewer, it makes
assumptions about how many iterations are reasonable) and returns the
average of the best three runs.

Enough of dates and times

Let’s talk a little bit about the final projects!

39

Final projects: meta data

• Count as much as three sheets! In theory:
• Project proposal / idea
• Implementation
• Documentation

• Partial grading possible (e.g. proposal and implementation but
no docs)

• Submission is 2017-07-05T14:15:00+02:00
• Last lecture, so that you can present your results

• Should be small projects, orient yourself at the amount of work
we did for the homework.

• Freestyle! Choose your own topic!

40

Final projects: requirements

• Demonstrate what you learned: use functions, maybe classes,
structure your code

• If you want, use a new python package we did not cover
• Write documentation for critical functions
• Write documentation for the project proposal (more in a couple

of slides)

41

Final projects: Project structure

crashers (rename this)
docs

conf.py
index.rst
modules (created on build)
_templates
_static
Makefile
make.bat

src
code files and dirs

42

Final projects: Project structure

crashers (rename this)
docs

conf.py
index.rst
modules (created on build)
_templates
_static
Makefile
make.bat

src
code files and dirs

20
17

-0
6-

14
Dates, Documentation

Final projects: Project structure

The src directory is the heart of your project. Here will all your modules,
packages, etc. be.

The docs directory is reserved for the documentation. We will have to do
some minor adjustments here.

Final projects: Kickstart

Rename the crashers directory to something suiting your project.
A codename, your group name, . . .

This is your project folder now. At the end, just zip it and submit it!

43

Final projects: Documentation

Figure 2: Example docs

44

Final projects: Documentation

Figure 2: Example docs20
17

-0
6-

14
Dates, Documentation

Final projects: Documentation

We will use Sphinx for the documentation.

pip install sphinx

Final projects: Documentation

Change the docs/conf.py here:

project = 'Castle Crashers Princess Edition'
author = 'Sebastian Höffner, Aline Vilks'

45

Final projects: Documentation

To build the documentation, navigate to the docs directory and
type:

make html

46

Final projects: Documentation

To build the documentation, navigate to the docs directory and
type:

make html

20
17

-0
6-

14
Dates, Documentation

Final projects: Documentation

This may or may not work properly now. If you have any troubles you
can’t solve, talk to us!

Final projects: Documentation

To view it, navigate to docs/_build/html and type:

python -m http.server 8080

Then bring up your browser and open http://localhost:8080

47

Final projects: Documentation

To view it, navigate to docs/_build/html and type:

python -m http.server 8080

Then bring up your browser and open http://localhost:8080

20
17

-0
6-

14
Dates, Documentation

Final projects: Documentation

This can differ for older Python versions. Come to us with any problems!

Final projects: Documentation

To change what you see, adjust the index.rst inside the docs directory. Then rebuild
(make html) the documentation!

Adjusting the index.rst is part 1 of your projects!
Ultimate Guide to Princess' World Domination
==

In a world, where princesses and knights fight bravely over the crown,
dragons might ruin the party.

This game is packed with intense battles between *princesses* and *knights*.
Choose your character and fight! But beware: There might be **dragons**!

Running the game

To run the game, simply run :code:`python main.py` in the :code:`src` dir.
Select a princess or a knight by typing :code:`p` or :code:`k`. Then use
:code:`s` and :code:`w` for strong and weak attacks, respectively. Fight
through your opponents until you conquer the crown!

.. toctree::
:maxdepth: 2

modules/modules
48

Final projects: Documentation – ReST

Titles are underlined
=====================

Bold fonts
italic fonts

Subtitle

:code:`inline code`

.. code-block:: python

print('Hello World!')

This is `a link`_ in a sentence.

.. _a link: http://localhost:8080

49

Final projects: Documentation – ReST

Titles are underlined
=====================

Bold fonts
italic fonts

Subtitle

:code:`inline code`

.. code-block:: python

print('Hello World!')

This is `a link`_ in a sentence.

.. _a link: http://localhost:808020
17

-0
6-

14
Dates, Documentation

Final projects: Documentation – ReST

There’s much much more to ReST, but these are the most important
things you will need.

You can try out (some) things at http://rst.ninjs.org/ .

Final projects: Documentation – Sphinx ReST

Sphinx provides some extensions. Keep this in your file:

.. toctree::
:maxdepth: 2

modules/modules

It creates a navigation to the module documentations.

50

Final projects: Documentation

Remember to use google style doc comments3:
class SampleClass(object):

"""Summary of class here.

Longer class information....
Longer class information....

Attributes:
likes_spam: A boolean indicating if we like SPAM or not.
eggs: An integer count of the eggs we have laid.

"""

def __init__(self, likes_spam=False):
"""Inits SampleClass with blah."""
self.likes_spam = likes_spam
self.eggs = 0

def public_method(self):
"""Performs operation blah."""
...

3Example taken from
https://google.github.io/styleguide/pyguide.html#Comments

51

Final projects: Ideas

If you don’t have any ideas, check out the document we uploaded or
seek us out.

52

Final projects: Main guideline

Have fun!

53

Appendix: Useful resources about dates and times

• Current Time: https://time.is/
• Time converter: https://www.epochconverter.com/
• Time converter: http://coderstoolbox.net/unixtimestamp/
• ISO 8601: https://en.wikipedia.org/wiki/ISO_8601

54

References

Munroe, Randall. 2013. “ISO 8601.” Xkcd. A Webcomic of
Romance, Sarcasm, Math, and Language., no. 1179 (February).

55

