
Errors and Finite State Machines
Basic Programming in Python

Sebastian Höffner Aline Vilks
Wed, 31 May 2017

1

Quick homework issues

• Don’t write your own sorting algorithms, just use what is their
• Don’t remove all print statements – we do expect some output

;-)
• Try to structure your code using functions

2

Homework issues: Changing attributes

def comfort_evaluation(car):
if car.seats == 2:

car.seats = 1
elif car.seats == 'more':

car.seats = 2
...
return car.seats + car.luggage + car.doors

What happens if we call the function twice for the same car which
had 'more' seats?

3

Homework issues: Changing attributes

def comfort_evaluation(car):
if car.seats == 2:

car.seats = 1
elif car.seats == 'more':

car.seats = 2
...
return car.seats + car.luggage + car.doors

What happens if we call the function twice for the same car which
had 'more' seats?

20
17
-0
5-
31

Errors and Finite State Machines

Homework issues: Changing attributes

Don’t change values if you just want to read them! Sometimes you want
to use them somewhere else, or someone else wrote some code where it’s
still important to have 'more'.

In this example on the first evaluation, car.seats would be set to 2, on
the second it would then be set to 1!

Mutability

def do(l):
l[0] = 3

l = [1, 2, 3]
do(l)
print(l)

Output:

[3, 2, 3]

For some more explanations and examples, check Immutable vs
Mutable types1.
1https://stackoverflow.com/q/8056130/3004221

4

https://stackoverflow.com/q/8056130/3004221

Mutability

def do(l):
l[0] = 3

l = [1, 2, 3]
do(l)
print(l)

Output:

[3, 2, 3]

For some more explanations and examples, check Immutable vs
Mutable types1.
1https://stackoverflow.com/q/8056130/300422120

17
-0
5-
31

Errors and Finite State Machines

Mutability

• Lists and objects are mutable, that means they can be modified
inside functions unless you copy them.

• int, str, float, etc. are not mutable (immutable), they always stay
what they were before the function call.

https://stackoverflow.com/q/8056130/3004221

Handling exceptions

We discussed:

• documentation
• asserts
• debugging

5

Handling exceptions

We discussed:

• documentation
• asserts
• debugging

20
17
-0
5-
31

Errors and Finite State Machines

Handling exceptions

While most (maybe even all?) errors are called Error, you will find me
calling them exceptions.

Correct would be to call SyntaxErrors errors and most other errors
exceptions.

But since there is no clear distinction between the two, I try to use
exception on all slides.

Expected exceptions

Sometimes exceptions are expected to happen. Be prepared!

number = None
while not number:

value = input('Please enter a number > 0: ')
number = float(value)

What if someone enters a name (and not a number)?

6

Try and except exceptions

number = None
while not number:

value = input('Please enter a number > 0: ')
try:

number = float(value)
except ValueError as value_error:

print('Error:', value_error)

Output:

Please enter a number > 0: Basti
Error: could not convert string to float: 'Basti'
Please enter a number > 0: 0
Please enter a number > 0: 1

7

Try and except exceptions

number = None
while not number:

value = input('Please enter a number > 0: ')
try:

number = float(value)
except ValueError as value_error:

print('Error:', value_error)

Output:

Please enter a number > 0: Basti
Error: could not convert string to float: 'Basti'
Please enter a number > 0: 0
Please enter a number > 0: 120

17
-0
5-
31

Errors and Finite State Machines

Try and except exceptions

try runs code until an exception occurs. If that exception was expected,
we can catch it with except.

Otherwise the program will crash, just as you have seen it many times with
exceptions.

Multiple exceptions

Sometimes you want to except multiple exceptions.

There are three ways to do this:

• Excepting all exceptions at once
• Excepting all individually
• A combination thereof

8

Excepting multiple exceptions at once

halogens = {9: 'F', 17: 'Cl',
35: 'Br', 53: 'I',
85: 'At'}

number = None
while number not in halogens.keys():

try:
number = int(input('Please enter an atomic number: '))
print('You selected', halogens[number])

except (ValueError , KeyError) as error:
print('Sorry!', error)

9

Excepting multiple exceptions individually

halogens = {9: 'F', 17: 'Cl',
35: 'Br', 53: 'I',
85: 'At'}

number = None
while number not in halogens.keys():

try:
number = int(input('Please enter an atomic number: '))
print('You selected', halogens[number])

except ValueError as error:
print('No number', error)

except KeyError as error:
print('Key not found', error)

10

To handle or not to handle?

Which errors should be handled, which ones not?

11

To handle

• KeyError
• ValueError
• ZeroDivisionError
• IndexError
• and many more

12

Not to handle

• SyntaxError
• IndentationError
• OutOfMemoryError
• RecursionError
• and many more

13

Not to handle

• SyntaxError
• IndentationError
• OutOfMemoryError
• RecursionError
• and many more

20
17
-0
5-
31

Errors and Finite State Machines

Not to handle

You should never handle exceptions which occur because of the code
syntax, nor should you handle exceptions which denote system limitations.

Rule of thumb: Handle only what you can handle with an algorithm.

Finally

def read(filename):
print('Opening')
handle = open(filename)
try:

print('Reading')
return handle.read().splitlines()

finally:
print('Closing')
handle.close()

read('Makefile')

Output:

Opening
Reading
Closing

14

Finally

def read(filename):
print('Opening')
handle = open(filename)
try:

print('Reading')
return handle.read().splitlines()

finally:
print('Closing')
handle.close()

read('Makefile')

Output:

Opening
Reading
Closing20

17
-0
5-
31

Errors and Finite State Machines

Finally

Statements inside a finally block will always be executed, regardless of
exceptions before or not.

It even works after returns!

It is most commonly used to ensure files and other connections are closed.
But beware: with is almost always better!

Finally

Exception:

try:
a = int('abc')

except ValueError :
a = -1

finally:
print('Finally!')

print(a)

Output:

Finally!
-1

No exception:

try:
a = int('1')

except ValueError :
a = -1

finally:
print('Finally!')

print(a)

Output:

Finally!
1

15

Raising your own exceptions

class CarException(Exception): pass

class Car:
def __init__(self, broken=False):

self.broken = broken

def drive(self):
if self.broken:

raise CarException('Broken cars do not drive!')
print('Driving!')

for car in [Car(), Car(True)]:
try:

car.drive()
except CarException as ce:

print(ce)

Output:

Driving!
Broken cars do not drive! 16

Raising your own exceptions

class CarException(Exception): pass

class Car:
def __init__(self, broken=False):

self.broken = broken

def drive(self):
if self.broken:

raise CarException('Broken cars do not drive!')
print('Driving!')

for car in [Car(), Car(True)]:
try:

car.drive()
except CarException as ce:

print(ce)

Output:

Driving!
Broken cars do not drive!

20
17
-0
5-
31

Errors and Finite State Machines

Raising your own exceptions

class CarException(Exception) means that the class CarException
inherits all properties the class Exception has. We won’t discuss
inheritance in more details. But it is important so that you can raise
exceptions.

The string in the exception you raise should be meaningful: It’s the error
message other people will see.

Use cases for exception handling

When writing your own programs, you will mostly have to deal with
exceptions when facing user input.

But there are other situations: Reading files, downloading data,
program interruptions, . . .

17

Combining strings and numbers

A common pattern we used so far:
wheels = 4
description = 'My car has ' + wheels + ' wheels.'
print(description)

Output:

Traceback (most recent call last):
File "<string>", line 2, in <module>

TypeError: must be str, not int

wheels = 4
description = 'My car has ' + str(wheels) + ' wheels.'
print(description)

Output:

My car has 4 wheels.

18

Combining strings and numbers

A common pattern we used so far:
wheels = 4
description = 'My car has ' + wheels + ' wheels.'
print(description)

Output:

Traceback (most recent call last):
File "<string>", line 2, in <module>

TypeError: must be str, not int

wheels = 4
description = 'My car has ' + str(wheels) + ' wheels.'
print(description)

Output:

My car has 4 wheels.20
17
-0
5-
31

Errors and Finite State Machines

Combining strings and numbers

Casting things to strings manually is very tedious. There’s a better way!

Format strings

wheels = 4
description = 'My car has {} wheels.'
print(description.format(wheels))

print('My car has {wheels}.'.format(wheels=6))

Output:

My car has 4 wheels.
My car has 6.

19

Format strings

wheels = 4
description = 'My car has {} wheels.'
print(description.format(wheels))

print('My car has {wheels}.'.format(wheels=6))

Output:

My car has 4 wheels.
My car has 6.

20
17
-0
5-
31

Errors and Finite State Machines

Format strings

The {} are delimiters. Here they just serve as placeholders, but we can do
much more with them. Notice the wheels in the second case? It allows to
name an argument.

Consider: 'I am at ({x}, {y})'.format(y=2, x=5).

Format strings are a powerful tool

print('{:.3}'.format(1/3))
print('{:0>8.3}'.format(4/3))
print('{:*^25}'.format('Hello'))

Output:

0.333
00001.33
**********Hello**********

20

Format strings are a powerful tool

print('{:.3}'.format(1/3))
print('{:0>8.3}'.format(4/3))
print('{:*^25}'.format('Hello'))

Output:

0.333
00001.33
**********Hello**********

20
17
-0
5-
31

Errors and Finite State Machines

Format strings are a powerful tool

The : means: now comes a format rule! The format rules then follow a
special syntax. The examples here go as follows:

• .3 Format with 3 decimal places (“After decimal separator, use up to
3 digits”).

• 0>8.3 Pad with 0s (put zeros to fill the width), align right (>), make
it 8 characters long (at least), and have 3 after the decimal separator.
Note that 8 is the total length, so there will be 8− 3− 1 characters
(or more if needed) left of the ..

• *ˆ25 Pad with *s, align centered (ˆ), make it 25 wide.

Format specifications

Figure 1:
https://docs.python.org/3.6/library/string.html#format-string-syntax

21

Format specifications

Figure 1:
https://docs.python.org/3.6/library/string.html#format-string-syntax

20
17
-0
5-
31

Errors and Finite State Machines

Format specifications

Now you can create output which looks like you want without having to
weirdly concatenate strings and check spaces, etc.

There is much more inside the documentation, we will take a look at some
of it now.

Paradigm shift

We have now learned a huge set of tools in Python:

Variables, functions, classes, numbers, strings, error handling,
documentation, lists, dictionaries, sets, tuples, some built-in functions,
lambdas, list comprehensions, mathematical operations, directory
structures, imports, naming and code conventions, input and output,
loops, if and else, . . .

If you want to go into more details about all those things, I
recommend the Python Tutorial2. It covers what we did and
sometimes a little bit more.

For the rest of the course, we will mostly focus on applications.

2https://docs.python.org/3/tutorial/

22

https://docs.python.org/3/tutorial/

Finite State Machines (FSM/FSA)

• Abstract machines
• Can decide (acceptors/classifiers) or produce output

(transductors)
• Have a finite number of distinct states
• Can perform state transitions to change state

• They can be deterministic or non-deterministic

• Here: focus on deterministic acceptors3

3Deterministic Finite Automaton (DFA)

23

Finite State Machines (FSM/FSA)

• Abstract machines
• Can decide (acceptors/classifiers) or produce output

(transductors)
• Have a finite number of distinct states
• Can perform state transitions to change state

• They can be deterministic or non-deterministic

• Here: focus on deterministic acceptors3

3Deterministic Finite Automaton (DFA)20
17
-0
5-
31

Errors and Finite State Machines

Finite State Machines (FSM/FSA)

• Sometimes called Finite State Automaton (FSA)
• The formal things now will be a little bit boring for people following

the Computer Science D class by Prof. Chimani or the Computational
Linguistics class by Dr. phil. Gregoromichelaki, but we will make
some more practical considerations.

• You can already guess: This is a cool link to other subjects!

DFA and formal languages

• DFA decides if a word w is possible in formal language L
• L is defined over alphabet Σ like this: L ⊆ Σ∗

• L is described by a set of rules
• DFA checks if w follows rule set or not

24

DFA and formal languages

• DFA decides if a word w is possible in formal language L
• L is defined over alphabet Σ like this: L ⊆ Σ∗

• L is described by a set of rules
• DFA checks if w follows rule set or not

20
17
-0
5-
31

Errors and Finite State Machines

DFA and formal languages

• Σ can be something like {a, b}
• Σ∗ is then the set of all possible combinations of a and b and the

empty set ∅
• Examples are: aaababb, a, ∅, bbbb, ab, . . .

The formal language “Python binaries”

The formal language “Python binaries” Lpb is defined over the
alphabet Σ = {0, 1, b}. It has the following rules:

1. The empty word (∅) is not part of Lpb.
2. Each word must start with 0b.
3. After b, a 1 or a 0 must follow.
4. After any 1 or 0 (not the first), there may follow another 1 or 0.

Considering the rules above. Which of these words are part of Lpb?

1. w0 = 0b001101
2. w1 = 0b110
3. w2 = 01110011
4. w3 = b0b101b
5. w4 = 0b0000011
6. w5 = 0b 25

The formal language “Python binaries”

The formal language “Python binaries” Lpb is defined over the
alphabet Σ = {0, 1, b}. It has the following rules:

1. The empty word (∅) is not part of Lpb.
2. Each word must start with 0b.
3. After b, a 1 or a 0 must follow.
4. After any 1 or 0 (not the first), there may follow another 1 or 0.

Considering the rules above. Which of these words are part of Lpb?

1. w0 = 0b001101
2. w1 = 0b110
3. w2 = 01110011
4. w3 = b0b101b
5. w4 = 0b0000011
6. w5 = 0b20

17
-0
5-
31

Errors and Finite State Machines

The formal language “Python binaries”

Valid: w0,w1,w4.

Invalid: w2 (no b), w3 (too many b), w5 (no 0 or 1 after b).

DFA for “Python binaries”

A DFA A is a quintuple4:

A = (Σ,S,S0 ∈ S, δ : S × Σ→ S,G ⊆ S)

with:

• Σ: the input alphabet, here Σ = {0, 1, b}
• S: the set of states, we discuss this on the next slide
• S0 ∈ S: the start state, also next slide
• δ: the transition function which describes when to move where
• G : the set of goal states, if these are reached, the DFA accepts

4No worries, it’s not that hard!

26

Drawing a DFA as a directed graph

Astart B C D
0 b 0, 1

0, 1

We can now identify our states easily:

• S = {A,B,C ,D}
• S0 = A
• G = {D}

27

Creating a grammar

Astart B C D
0 b 0, 1

0, 1

Grammar:
A→ 0B
B → bC
C → 0D | 1D
D → 0D | 1D | ε

28

Creating a grammar

Astart B C D
0 b 0, 1

0, 1

Grammar:
A→ 0B
B → bC
C → 0D | 1D
D → 0D | 1D | ε20

17
-0
5-
31

Errors and Finite State Machines

Creating a grammar

A | denotes an or, ε means no input. Rules can either be of the form
S → σ ∈ Σ× S, S → σ ∈ Σ, or S → ε. The last two rules, which don’t
have new states defined, are called “terminal” rule.

There are also many algorithms to convert between grammars, diagrams,
rules, etc.; the problems we discuss are usually easily solved by “looking
closely”.

Writing a transition function

Astart B C D
0 b 0, 1

0, 1

Grammar:
A→ 0B

B → bC

C → 0D | 1D

D → 0D | 1D | ε

Transition function:

δ b 0 1

A ? B ?
B C ? ?
C ? D D
D ? D D

29

Writing a transition function

Astart B C D
0 b 0, 1

0, 1

Grammar:
A→ 0B

B → bC

C → 0D | 1D

D → 0D | 1D | ε

Transition function:

δ b 0 1

A ? B ?
B C ? ?
C ? D D
D ? D D20

17
-0
5-
31

Errors and Finite State Machines

Writing a transition function

You can read the transfer function like this:

Given a state (first column) and an input (first row), the state changes to
the state which is defined if we take state and input as coordinates. For
example, given state B and input 0, the next state would be C . State A
and input b result in state B. And so on. Formally each cell defines a rule
of the form S × Σ→ S, e.g. B × b → C and C × 0→ D.

What about the question marks?

Implicit error states

Solution: Add another state

δ b 0 1

A E B E
B C E E
C E D D
D E D D
E E E E

E is the implicit error state. It is difficult to imagine it in a grammar as it would not
have a nice terminal rule (a single element of Σ), but we can nicely draw it:

Astart B C D

E

0

1, b

b

0, 1

0, 1

b

0, 1

b

30

Implicit error states

Solution: Add another state

δ b 0 1

A E B E
B C E E
C E D D
D E D D
E E E E

E is the implicit error state. It is difficult to imagine it in a grammar as it would not
have a nice terminal rule (a single element of Σ), but we can nicely draw it:

Astart B C D

E

0

1, b

b

0, 1

0, 1

b

0, 1

b20
17
-0
5-
31

Errors and Finite State Machines

Implicit error states

The implicit error state is useful when we program our FSA.

To find out what leads to error state, imagine all possible inputs for each
state: Those which are not “legal” according to the grammar rules lead to
the error state (sometimes called “trap”).

Implementing δ

δ b 0 1

A E B E
B C E E
C E D D
D E D D
E E E E

def delta(state, letter):
states, inputs = ['A', 'B', 'C', 'D', 'E'], ['b', '0', '1']
transition = [

['E', 'B', 'E'],
['C', 'E', 'E'],
['E', 'D', 'D'],
['E', 'D', 'D'],
['E', 'E', 'E']

]
return transition[states.index(state)][inputs.index(letter)]

print('A x b -> {}'.format(delta('A', 'b')))
print('A x 0 -> {}'.format(delta('A', '0')))
print('C x 1 -> {}'.format(delta('C', '1')))

Output:

A x b -> E
A x 0 -> B
C x 1 -> D

31

Implementing a DFA

File: binary.py

def delta(state, letter):
states, inputs = ['A', 'B', 'C', 'D', 'E'], ['b', '0', '1']
transition = [

['E', 'B', 'E'],
['C', 'E', 'E'],
['E', 'D', 'D'],
['E', 'D', 'D'],
['E', 'E', 'E']

]
return transition[states.index(state)][inputs.index(letter)]

def fsa(word):
state = 'A'
for letter in word:

state = delta(state, letter)
return state == 'D'

if __name__ == '__main__':
for b in ['0b01', '011', '0b1101']:

print('{} {}'.format(b, fsa(b)))

Output:

0b01 True
011 False
0b1101 True 32

Checking our examples

import binary # The file from last slide

for b in ['0b001101', '0b110', '01110011',
'b0b101b', '0b0000011', '0b']:

print('{} {}'.format(b, binary.fsa(b)))

Output:

0b001101 True
0b110 True
01110011 False
b0b101b False
0b0000011 True
0b False

33

Where do we find DFA?

Where do you think do we find DFA?

34

Where do we find DFA?

• coin vending machines
• programming (remember the string format syntax?)
• cars (e.g. wiper motors)
• process descriptions
• . . .

35

Your ninth homework

• Coffee machines are also some automaton. Help us to decide
which “recipes” work best for our coffee!

36

