
Exercise Sheet 09 Solutions – Errors and Finite
State Machines

Sebastian Höffner Aline Vilks

Deadline: Mon, 05 June 2017 08:00 +0200

Exercise 1: Making coffee

File: coffee.py
"""Coffee acceptor.

This module implements a finite state machine, a coffee acceptor.

It has the states A to H and the inputs P, C, F, and B. The transition is
defined as follows:

P C F B
-- - - - -
A C A B H
B D B H H
C H E D H
D H F H H
E H E F H
F H F H G
G H G H H
H H H H H

The module reads a file coffeerecipes.txt and checks which recipes are good and
which ones are bad. Example recipes are:

PFCFB
PFCB

The first one, PFCFB, fails, while PFCB is okay.
"""

1



def transition(state, action):
"""Implements the acceptor's transition function.

Given a state (A, B, ..., H) and an action (P, C, F, B), this function
determines the next state.

Args:
state: The state from which to move.
action: The action to perform.

Returns:
The new state.

"""

action_map = 'PCFB'
state_map = 'ABCDEFGH'
delta = [

['C', 'A', 'B', 'H'],
['D', 'B', 'H', 'H'],
['H', 'E', 'D', 'H'],
['H', 'F', 'H', 'H'],
['H', 'E', 'F', 'H'],
['H', 'F', 'H', 'G'],
['H', 'G', 'H', 'H'],
['H', 'H', 'H', 'H'],

]
return delta[state_map.index(state)][action_map.index(action)]

def test(recipe):
"""Tests if recipe is accepted by the acceptor.

Args:
recipe: The recipe.

Returns:
A tuple of length 2. The first value is either True or False, depending
on whether the recipe was accepted or not. The second value is a string
representing the visited states.

"""
states = 'A'
for action in recipe:

states += transition(states[-1], action)
return states[-1] == 'G', states

2



def read_recipes(filename):
"""Reads the file and returns its content as a list of strings."""
with open(filename, 'r') as file_handle:

return file_handle.read().splitlines()

def main():
"""Tests all coffee recipes and prints the results."""
recipes = read_recipes('coffeerecipes.txt')

results = []
for recipe in recipes:

results.append(test(recipe))

for recipe, (result, states) in sorted(zip(recipes, results),
key=lambda x: x[1][0]):

print('Recipe: {}'.format(recipe))
print('States: {}'.format(states))
print('Result: {}.'.format('Okay' if result else 'Fail'), end='\n\n')

if __name__ == '__main__':
main()

Output:
Recipe: PFCFB
States: ACDFHH
Result: Fail.

Recipe: FCCPCFCCBC
States: ABBBDFHHHHH
Result: Fail.

Recipe: PCCCFCCFB
States: ACEEEFFFHH
Result: Fail.

Recipe: CFPB
States: AABDH
Result: Fail.

Recipe: PCFB
States: ACEFG
Result: Okay.

3



Recipe: PFCB
States: ACDFG
Result: Okay.

Recipe: FCCPCCCCB
States: ABBBDFFFFG
Result: Okay.

Recipe: FPCCB
States: ABDFFG
Result: Okay.

Recipe: CPCCFB
States: AACEEFG
Result: Okay.

Recipe: CFPCB
States: AABDFG
Result: Okay.

4


	Exercise 1: Making coffee

