
Practical Python
Basic Programming in Python

Sebastian Höffner Aline Vilks
Wed, 24 May 2017

1

Built-in functions for your everyday tasks

We already discussed some built-in functions1, for example:

• open: Opens a file
• str, float, int: Casts data to the respective types
• range: Generates a sequence of numbers
• enumerate: Gives us indices and items for iterations
• set, list, tuple, dict: Create the corresponding collections

1https://docs.python.org/3/library/functions.html

2

https://docs.python.org/3/library/functions.html

Built-in functions

Figure 1: Built-in Functions. (Python Software Foundation 2017)

3

Built-in functions

Figure 2: Green: You know these. Orange: Cover these on your own.
Red: Today! Blue: Future sessions. Grey: We won’t need these. (Python
Software Foundation 2017)

4

Homework issues: __repr__

class Car:
def __init__(self, color):

self.color = color

def __str__(self):
return self.color + ' car'

cars = [Car(c) for c in ('blue', 'red', 'yellow')]
print(cars)

Output:

[<__main__.Car object at 0x109718f60>, <__main__.Car object at 0x10971e048>, <__main__.Car object at 0x10971e0f0>]

5

Homework issues: __repr__

class Car:
def __init__(self, color):

self.color = color

def __str__(self):
return self.color + ' car'

cars = [Car(c) for c in ('blue', 'red', 'yellow')]
print(cars)

Output:

[<__main__.Car object at 0x109718f60>, <__main__.Car object at 0x10971e048>, <__main__.Car object at 0x10971e0f0>]20
17

-0
5-

24
Practical Python

Homework issues: __repr__

The print functions tries to call __str__ for all objects you give it. Here,
the object is a list! The list’s __str__ function calls its elements’
__repr__ functions.

Homework issues: __repr__

__repr__ should return a string which can be used to create an
object which is similar:
class Car:

def __init__(self, color):
self.color = color

def __str__(self):
return self.color + ' car'

def __repr__(self):
return 'Car("' + self.color + '")'

cars = [Car(c) for c in ('blue', 'red', 'yellow')]
print(cars)

Output:

[Car("blue"), Car("red"), Car("yellow")]

6

Homework issues: x is not callable

A variable is callable if it is for example a function:

number = 5
fun = sum
class Car:

pass

print('number is callable:', callable(number))
print('fun is callable:', callable(fun))
print('Car is callable:', callable(Car))

Output:

number is callable: False
fun is callable: True
Car is callable: True

Why is Car callable?

7

Homework issues: x is not callable

A variable is callable if it is for example a function:

number = 5
fun = sum
class Car:

pass

print('number is callable:', callable(number))
print('fun is callable:', callable(fun))
print('Car is callable:', callable(Car))

Output:

number is callable: False
fun is callable: True
Car is callable: True

Why is Car callable?

20
17

-0
5-

24
Practical Python

Homework issues: x is not callable

Car is callable since calling a class (Car()) is creating a new instance.

Homework issues: * (tuple unpacking)

def add(a, b):
return a + b

print(add(*[1, 2]))

Output:

3

add(*[1, 2]) is equivalent to add(1, 2) – Python “unpacks” the
values into each function argument.

8

General questions: if __name__ == '__main__':

• Modules have __name__s, the one you run __main__, others
their file or directory names (without .py).

• import executes files
• To avoid random prints etc. on import, “secure” your code in

if block:
• if __name__ == '__main__':

• For extra karma you can put every code in that block into a
function (usually main):

• def main():
• Call main inside the if block
• This avoids global scope pollution

9

Find the lowest number

vacation_offers = [1023.43, 983.4, 985.12, 1014.52]

10

Find the lowest number

vacation_offers = [1023.43, 983.4, 985.12, 1014.52]
low = float('inf')
for offer in vacation_offers:

if offer < low:
low = offer

print(low)

Output:

983.4

11

Find the highest number

vacation_offers = [1023.43, 983.4, 985.12, 1014.52]
high = -float('inf')
for offer in vacation_offers:

if offer > high:
high = offer

print(high)

Output:

1023.43

12

Python can do it already!

vacation_offers = [1023.43, 983.4, 985.12, 1014.52]
print(min(vacation_offers))
print(max(vacation_offers))

Output:

983.4
1023.43

13

Any & All

none_true = [False, False, False, False]
some_true = [True, False, True, False]
all_true = [True, True, True, True]

14

Any & All

none_true = [False, False, False, False]
some_true = [True, False, True, False]
all_true = [True, True, True, True]

20
17

-0
5-

24
Practical Python

Any & All

A very common operation is to check if some values fulfill some condition,
all match it, or none.

Later we will see how we can easily create lists of boolean values like the
ones above.

Any & All

none_true = [False, False, False, False]
some_true = [True, False, True, False]
all_true = [True, True, True, True]

def any_true(tocheck):
for elem in tocheck:

if elem:
return True

return False

def all_true(tocheck):
for elem in tocheck:

if not elem:
return False

return True

print('Any in none?', any_true(none_true))
print('Any in some?', any_true(some_true))
print('All in some?', all_true(some_true))
print('All in all?', all_true(all_true))

15

Any & All

none_true = [False, False, False, False]
some_true = [True, False, True, False]
all_true = [True, True, True, True]

print('Any in none?', any(none_true))
print('Any in some?', any(some_true))
print('All in some?', all(some_true))
print('All in all?', all(all_true))

16

Sorting in Python

sorted_list = sorted([9, 2, 5, 3, 1, 8, 19])
print(sorted_list)
sorted_list = sorted([9, 2, 5, 3, 1, 8, 19], reverse=True)
print(sorted_list)

Output:

[1, 2, 3, 5, 8, 9, 19]
[19, 9, 8, 5, 3, 2, 1]

17

Sorting by key

def get_age(item):
return item['age']

unsorted_dicts = [{'age': 23}, {'age': 25}, {'age': 21}]
sorted_dicts = sorted(unsorted_dicts, key=get_age)
print(sorted_dicts)

Output:

[{'age': 21}, {'age': 23}, {'age': 25}]

18

Sorting by key

def get_age(item):
return item['age']

unsorted_dicts = [{'age': 23}, {'age': 25}, {'age': 21}]
sorted_dicts = sorted(unsorted_dicts, key=get_age)
print(sorted_dicts)

Output:

[{'age': 21}, {'age': 23}, {'age': 25}]

20
17

-0
5-

24
Practical Python

Sorting by key

If you attempted the difficult bonus exercise last week, you already saw
how to use a key function. Now we will shed some light into it.

Passing functions around

def shout():
print('HELLO!')

def whisper():
print('hello...')

def do_something(what):
what()

do_something(whisper)
do_something(shout)

Output:

hello...
HELLO!

19

Passing functions around

def shout():
print('HELLO!')

def whisper():
print('hello...')

def do_something(what):
what()

do_something(whisper)
do_something(shout)

Output:

hello...
HELLO!20

17
-0

5-
24

Practical Python

Passing functions around

Python always passes by object reference. For some objects, those which
are mutable, this means that we get references to those objects which we
can use and modify. For others, like integers and strings (which are
immutable) they get copied themselves.

Mutable objects

def mutate(some_list):
some_list.append(1)

my_list = []
mutate(my_list)
mutate(my_list)
print(my_list)

Output:

[1, 1]

20

No reassignment possible

def cantreassign(some_list):
some_list = [1, 2, 3]

my_list = []
cantreassign(my_list)
print(my_list)

Output:

[]

21

Using function objects: map and filter

Python has two interesting functions: map and filter

Both take two arguments: A function, and an iterable (e.g. a list, a
string, . . .)

22

map

map calls the passed function on each element and stores the results
into a map object. This can be transformed into a list:

def square(x):
return x * x

in_list = [1, 2, 3, 4, 5]
out_list = list(map(square, in_list))
print(out_list)

Output:

[1, 4, 9, 16, 25]

23

filter

filter calls the passed function on each element and stores those
elements, for which the result is not False, into a filter object.
This can be transformed into a list.

def is_even(x):
return not x & 1

in_list = [1, 2, 3, 4, 5]
out_list = list(filter(is_even, in_list))
print(out_list)

Output:

[2, 4]

24

map and filter

Chaining is possible (even without explicit list conversions in
between):

def is_even(x):
return not x & 1

def square(x):
return x * x

in_list = [1, 2, 3, 4, 5]
out_list = list(map(square, filter(is_even, in_list)))
print(out_list)

Output:

[4, 16] 25

Using function objects: Comparison to lists

def is_even(x): return not x & 1

def square(x): return x * x

in_list = [1, 2, 3, 4, 5]
out_list = list(map(square, filter(is_even, in_list)))
is equivalent to
acc_list = []
for x in in_list:

if is_even(x):
acc_list.append(square(x))

print(out_list)
print(acc_list)

Output:

[4, 16]
[4, 16]

26

Using function objects: Comparison to lists

def is_even(x): return not x & 1

def square(x): return x * x

in_list = [1, 2, 3, 4, 5]
out_list = list(map(square, filter(is_even, in_list)))
is equivalent to
acc_list = []
for x in in_list:

if is_even(x):
acc_list.append(square(x))

print(out_list)
print(acc_list)

Output:

[4, 16]
[4, 16]20

17
-0

5-
24

Practical Python

Using function objects: Comparison to lists

Don’t write functions like this, I just save some space.

Using function objects: Comparison to list comprehensions

def is_even(x): return not x & 1

def square(x): return x * x

in_list = [1, 2, 3, 4, 5]
out_list = list(map(square, filter(is_even, in_list)))
is equivalent to
acc_list = [square(x) for x in in_list if is_even(x)]

print(out_list)
print(acc_list)

Output:

[4, 16]
[4, 16]

27

Using function objects: Comparison to list comprehensions

def is_even(x): return not x & 1

def square(x): return x * x

in_list = [1, 2, 3, 4, 5]
out_list = list(map(square, filter(is_even, in_list)))
is equivalent to
acc_list = [square(x) for x in in_list if is_even(x)]

print(out_list)
print(acc_list)

Output:

[4, 16]
[4, 16]20

17
-0

5-
24

Practical Python

Using function objects: Comparison to list
comprehensions

You can read up a little bit more about how to unroll list comprehensions
here: https://docs.python.org/3/tutorial/datastructures.html#list-
comprehensions

Take a look at the for loop inside the for loop for a hint for the homework
;-)

Nested functions

def hello():
hi = 'Hello'
def world():

return 'World'
print(hi + world())

hello()
world()

Output:

HelloWorld
Traceback (most recent call last):

File "<string>", line 8, in <module>
NameError: name 'world' is not defined 28

Nested functions

def hello():
hi = 'Hello'
def world():

return 'World'
print(hi + world())

hello()
world()

Output:

HelloWorld
Traceback (most recent call last):

File "<string>", line 8, in <module>
NameError: name 'world' is not defined

20
17

-0
5-

24
Practical Python

Nested functions

Functions are just normal variables, so it’s even possible to nest them,
i.e. having function declarations inside of function declarations.

They are only available inside the scope they were declared (except for
when you return them and use them somewhere else).

Nested functions can access variables

def times(x0, x1):
def add(y):

return y + x1
result = 0
for i in range(x0):

x1 += 1
result = add(result)

return result, x1

print(*times(4, 5))

Output:

30 9
29

Nested functions can access variables

def times(x0, x1):
def add(y):

return y + x1
result = 0
for i in range(x0):

x1 += 1
result = add(result)

return result, x1

print(*times(4, 5))

Output:

30 920
17

-0
5-

24
Practical Python

Nested functions can access variables

They can access variables inside the scope they were declared.

In the example, the result is 30 and 9 because:

• range(4) has 4 values
• x1 is incremented in each of the four iterations before doing the

addition
• x1 thus takes the values: 6, 7, 8, 9.
• 6 + 7 + 8 + 9 = 30.

You can return nested functions

def create_adder():
def adder(x, y):

return x + y
return adder

my_add = create_adder()
print(my_add(5, 7))

Output:

12

30

Lambdas

add = lambda x, y: x + y
print(add(4, 5))

print((lambda x, y: x + y)(9, 3))

Output:

9
12

31

Lambdas

add = lambda x, y: x + y
print(add(4, 5))

print((lambda x, y: x + y)(9, 3))

Output:

9
12

20
17

-0
5-

24
Practical Python

Lambdas

You have seen that it’s possible to pass functions around.

This is cool, but sometimes you don’t want them to have names and
clutter your scope or you feel like this is not a function worth reusing much.

This is where lambdas come into play: small anonymous functions.

They work like normal functions but are slightly limited:

• They don’t have a name
• They can only have one statement (which is automatically the return

statement)

Why nested functions and lambdas?

• Nested functions and lambdas are used as simple functions for
e.g. the sorted’s key argument.

• They are often used to be passed around.
• They allow inline specification of functions you don’t really feel

worth to be proper functions, e.g. adding two values or
combining them into tuples.

32

zip

One powerful functions is zip.

Often you will that you have some data which looks like this:

[(x0, y0), (x1, y1), (x2, y2)] or [(x0, y0, z0), (x1,
y1, z1), (x2, y2, z3)]

Or sometimes it will be separate lists:

[x0, x1, x2], [y0, y1, y2], and [z0, z1, z2].

And of course, your favorite plotting library always takes it the other
way.

33

zip

x = [1, 3, 5]
y = [2, 4, 6]
c = list(zip(x, y))
print(c)

reverse
x_n, y_n = zip(*c)
print(list(x_n), list(y_n))

Output:

[(1, 2), (3, 4), (5, 6)]
[1, 3, 5] [2, 4, 6]

34

zip

x = [1, 3, 5]
y = [2, 4, 6]
c = list(zip(x, y))
print(c)

reverse
x_n, y_n = zip(*c)
print(list(x_n), list(y_n))

Output:

[(1, 2), (3, 4), (5, 6)]
[1, 3, 5] [2, 4, 6]20

17
-0

5-
24

Practical Python

zip

zip works like a zipper. If you have to sides of a zipper [1, 3, 5] and
[2, 4, 6] it will create pairs of those tooth which belong together:
list(zip([1, 3, 5], [2, 4, 6])) results in [(1, 2), (3, 4),
(5, 6)].

It is generalized to higher dimensions: If you have n lists with m elements,
you will get one list with m tuples containing n elements – always the
matching ones. That means the i-th element of all n lists will be inside
the i-th tuple.

Using tuple unpacking (twice, once to pass the arguments and once
implicitly using the return values) you can reverse the process.

zip in higher dimensions

x = [1, 4, 7]
y = [2, 5, 8]
z = [3, 6, 9]
c = list(zip(x, y, z))
print(c)

reverse
x_n, y_n, z_n = zip(*c)
print(list(x_n), list(y_n), list(z_n))

Output:

[(1, 2, 3), (4, 5, 6), (7, 8, 9)]
[1, 4, 7] [2, 5, 8] [3, 6, 9]

35

dir

The dir function is the last built-in function we discuss today. It
allows you to inspect attributes of an object:
from textwrap import fill
dir_out = dir('abc')
print(fill(', '.join(dir_out)))

Output:

__add__, __class__, __contains__, __delattr__, __dir__, __doc__,
__eq__, __format__, __ge__, __getattribute__, __getitem__,
__getnewargs__, __gt__, __hash__, __init__, __init_subclass__,
__iter__, __le__, __len__, __lt__, __mod__, __mul__, __ne__, __new__,
__reduce__, __reduce_ex__, __repr__, __rmod__, __rmul__, __setattr__,
__sizeof__, __str__, __subclasshook__, capitalize, casefold, center,
count, encode, endswith, expandtabs, find, format, format_map, index,
isalnum, isalpha, isdecimal, isdigit, isidentifier, islower,
isnumeric, isprintable, isspace, istitle, isupper, join, ljust, lower,
lstrip, maketrans, partition, replace, rfind, rindex, rjust,
rpartition, rsplit, rstrip, split, splitlines, startswith, strip,
swapcase, title, translate, upper, zfill 36

dir

The dir function is the last built-in function we discuss today. It
allows you to inspect attributes of an object:
from textwrap import fill
dir_out = dir('abc')
print(fill(', '.join(dir_out)))

Output:

__add__, __class__, __contains__, __delattr__, __dir__, __doc__,
__eq__, __format__, __ge__, __getattribute__, __getitem__,
__getnewargs__, __gt__, __hash__, __init__, __init_subclass__,
__iter__, __le__, __len__, __lt__, __mod__, __mul__, __ne__, __new__,
__reduce__, __reduce_ex__, __repr__, __rmod__, __rmul__, __setattr__,
__sizeof__, __str__, __subclasshook__, capitalize, casefold, center,
count, encode, endswith, expandtabs, find, format, format_map, index,
isalnum, isalpha, isdecimal, isdigit, isidentifier, islower,
isnumeric, isprintable, isspace, istitle, isupper, join, ljust, lower,
lstrip, maketrans, partition, replace, rfind, rindex, rjust,
rpartition, rsplit, rstrip, split, splitlines, startswith, strip,
swapcase, title, translate, upper, zfill

20
17

-0
5-

24
Practical Python

dir

While this is not really something you use in practice, it allows you to
debug some of your programs or to get some ideas of what might be
available for your objects.

In the example you can see many functions and attributes str objects
have.

Your eighth homework

Today we discussed the differences between

• map, filter, lambda (and other functions)
• lists with accumulators
• list comprehensions
• Implement some simple lists using all of the above methods to

get an idea of how to transform between them and which are
more appropriate in which situation.

• Use a custom function to sort cars by their comfort.

37

References

Python Software Foundation. 2017. Python 3.6.0 Documentation.
3.6.0 ed. Beaverton, Oregon, USA: Python Software Foundation.

38

