Exercise Sheet 07 — Sorting and Object Oriented
Programming

Sebastian Hoflner Aline Vilks

Deadline: Mon, 22 May 2017 08:00 +0200

Submission

By the end of this sheet you will have a number of different files to submit. In
Stud.IP you will have a directory for your own group, please upload them there.
It is easier for you if you just archive (preferably zip) all files and upload your
archive, but it is okay if you upload them one by one.

Exercise 1: Sorting Bond movies

During the lecture we implemented a simple sort algorithm called bubble sort.
As your homework, it is your task to change bubble sort to sort some Bond
movies. You can find a bond.csv file inside the accompanying zip file. It is a
simplified list of Wikipedia’s List of James Bond films®.

Create a class Movie which models a movie:
e A movie has a title.
¢ A movie has a release year.
¢ A movie has lead actor.
e A movie has a budget (a float, in US dollars).
o A movie has a box office revenue (a float, in US dollars).

e Implement the __str__ method such that printing a film shows the title
followed by the year and the lead actor in parentheses:

From Russia with Love (1963, Sean Connery)

Lhttps: //en.wikipedia.org/wiki/List__of James Bond_ films#Box_office _and_budget


https://en.wikipedia.org/wiki/List_of_James_Bond_films#Box_office_and_budget

e Implement a method income which calculates the “income” of a movie
(while this is technically not correct, we will assume that the income is the
difference between the box office revenue and the budget of a movie — also
this is not adjusted to account for inflation).

Inside the zip file for this homework you will find an implementation of bubble
sort (in movies.py). Change it so that it becomes movie_sort and sorts a list
of movies by their release years.

Bonus: Change movie_sort such that you can pass a function key which
selects the attribute to be sorted on, that is: def movie_sort(movies,
key=get_movie_year) and sorts the list accordingly. Hint: A cool idea for keys
is to use lambda functions?, e.g. key=lambda movie: movie.year. You can
find some examples in the bonus function.

Make all your changes inside the movies.py and submit your result.

Exercise 2: Castles crashed... again!

Remember the little knights from exercise sheet 23? Now we can model them
much better! Modify the file knights.py as explained below.

Define a class Knight, where each knight has level, strength, magic,
defense, and agility. Knights have a normal_attack(self, other),
a strong_attack(self, other), a throw_attack(self, other), and an
arrow_attack(self, other). Each of those attacks deals damage according
to the other knight’s take_damage(self, attack_damage) function. For
example the strong_attack(self, other) looks like this:

def strong_attack(self, other):
damage = (5 + 1.15 * self.strength + 0.1 * self.level) // 1
other.take_damage (damage)

Remember to add some current health to each knight. When the current health
is less than or equal to 0, a function is_alive(self) should return False.
When instantiating a knight, it starts at full health (maximum_health(self)).

Gather the information about formulae you still need from sheet 2, you may of
course also check its example solution.

Your output should look like this:

Round: 9
Red alive? True HP: 173.0
Blue alive? False HP: -24.0

2https://docs.python.org/3/reference/expressions.html#lambda
Shttps://shoeffner.github.io/monty /files/BPP-02_ Variables AssignmentsFunctions-
Sheet.pdf


https://docs.python.org/3/reference/expressions.html#lambda
https://shoeffner.github.io/monty/files/BPP-02_VariablesAssignmentsFunctions-Sheet.pdf
https://shoeffner.github.io/monty/files/BPP-02_VariablesAssignmentsFunctions-Sheet.pdf

	Submission
	Exercise 1: Sorting Bond movies
	Exercise 2: Castles crashed… again!

