
Python Packages
Basic Programming in Python

Sebastian Höffner Aline Vilks
Wed, 10 May 2017

1

Homework issues

• Code written by others is always hard to read
• Usually complex code can’t be read “from top to bottom”

2

Writing files without simply dumbing the data structures

• Don’t just print([1, 2, 3], file=somefile)!
• Often libraries (like the csv or json packages) are better
• Sometimes it’s still enough to write a custom solution.
• Be careful of line endings. In general Python handles them

correctly if you just use \n, no matter the OS.

File: iris_correction.py

with open('iris.data', 'r') as iris_in, open('iris.csv', 'w') as iris_out:
for i, line in enumerate(iris_in, 1):

if i == 35:
line = '4.9,3.1,1.5,0.2,Iris-setosa\n'

if i == 38:
line = '4.9,3.6,1.4,0.1,Iris-setosa\n'

print(line, file=iris_out, end='')

3

Try things out

Download the files accompanying the lecture slides to follow along
today. (Also your homework or our solutions from last week.)

4

No matplotlib. :-(

Even though it was announced off the record last week: We will not
use matplotlib just yet. Sorry for that.

Agenda for today:

• Two algorithms (Euclidean algorithm and magic square)
• Python packages and modules

5

No matplotlib. :-(

Even though it was announced off the record last week: We will not
use matplotlib just yet. Sorry for that.

Agenda for today:

• Two algorithms (Euclidean algorithm and magic square)
• Python packages and modules

20
17

-0
5-

10
Python Packages

No matplotlib. :-(

Even though it was announced: We will not use matplotlib just yet.

Instead I will for the next two weeks or more focus more on programming –
in Python and in general.

This will, or so I hope, make it much easier for you to use any “library”
like matplotlib in the future and make you better programmers even
when you don’t use Python for future projects.

Euclidean algorithm

Given two natural numbers, find their greatest common divisor1.

It’s a simple task for e.g. 12 and 8:

12 = 12 · 1 = 6 · 2 = 4 · 3 = 3 · 2 · 2 8 = 8 · 1 = 4 · 2 = 2 · 2 · 2

gcd(12, 8) = max ({12, 6, 4, 3, 2, 1} ∩ {8, 4, 2, 1}) (1)
= max {4, 2, 1} (2)
= 4 (3)

Let’s try it for 2329 and 2091.
1That is the number which divides both numbers and without remainder, i.e. if

gcd(a, b) = c then c is the maximum value for which holds that a mod c = 0
and b mod c = 0.

6

Euclidean algorithm

It’s tedious for big numbers to write down all factorizations and
compare the sets.

Euclid had a nice idea which can be summarized as follows:

To find the greatest common divisor (gcd) of two integers,
a and b, find out which one is smaller. Then subtract it
from the other one as long as the result will be greater
than 0. Swap the numbers, as now the other one will be
smaller and do the same. Continue until you reach 0: the
remaining number is the gcd.

7

Euclidean algorithm

1. a = 2329, b = 2091
2. Since a > b: a− b = 2329− 2091 = 238. Repeat but use 2091

and 238 now.
3. 2091 > 238: 2091− 238 = 1851. Keep going:

1851− 238 = 1615. Shortcut: 2091− (8 · 238) = 187.
4. 238 > 187: 238− 187 = 51
5. 187 > 51: 187− (3 · 51) = 34
6. 51− 34 = 17
7. 34− 17 = 17 !
8. Since 17 = 17, the result is: 17

8

Euclidean algorithm

def gcd(a, b):
while a != b:

if a > b:
a -= b

else:
a, b = b, a

return a

print(gcd(2329, 2091))

Output:

17

9

Euclidean algorithm

def gcd(a, b):
while a != b:

if a > b:
a -= b

else:
a, b = b, a

return a

print(gcd(2329, 2091))

Output:

1720
17

-0
5-

10
Python Packages

Euclidean algorithm

Do you notice that subtracting b again and again until it would fall below
0 is nothing else but taking the modulo? Maybe we can improve on that.

Euclidean algorithm

def gcd(a, b):
while b != 0:

a, b = b, a % b
return a

print(gcd(2329, 2091))

Output:

17

10

Euclidean algorithm

def gcd(a, b):
while b != 0:

a, b = b, a % b
return a

print(gcd(2329, 2091))

Output:

17

20
17

-0
5-

10
Python Packages

Euclidean algorithm

a, b = b, a is a nice Python feature to swap values.

Euclidean algorithm – recursive

def gcd(a, b):
if b != 0:

return gcd(b, a % b)
return a

print(gcd(2329, 2091))

Output:

17

def gcd(a, b):
return a if not b else gcd(b, a % b)

print(gcd(2329, 2091))

Output:

17

11

Euclidean algorithm – recursive

def gcd(a, b):
if b != 0:

return gcd(b, a % b)
return a

print(gcd(2329, 2091))

Output:

17

def gcd(a, b):
return a if not b else gcd(b, a % b)

print(gcd(2329, 2091))

Output:

17

20
17

-0
5-

10
Python Packages

Euclidean algorithm – recursive

Do you remember that 0 is evaluated to False in Python? So not b is
essentially the same as b == 0.

a if condition else b is a conditional expression and evaluates to a if
the condition is True, otherwise it becomes b. Although it only
describes the type of operator ternary operator is often used when talking
about this specific form of conditional expression.

Magic squares

This is a magic square of order n = 3:

8 1 6
3 5 7
4 9 2

It uses exactly all numbers from 1 to n2, where n × n is the size of
the square.

All rows, columns and the main diagonals sum up to the same value
(15).

12

Magic squares

We can follow a nice algorithm to construct one for odd orders (i.e.
n = 1, n = 3, . . .):

1. Write a 1 into the middle of the first row.
That space is now the current space.

2. Test if the upper right neighbor is empty.
3. If it is: write the next number into that space.

That space is now the current space.
4. If it is not: test if the bottom neighbor is empty.

5. If it is: write next number into that space.
That space is now the current space.

6. If it is not: You are done.
7. Continue with step 2.

13

Magic squares

File: magicsquare.py

upright = (-1, 1)
down = (1, 0)

def init(order):
return [[0] * order for i in range(order)], (0, order // 2)

def magic(square, position, number=1):
square[position[0]][position[1]] = number
for yoff, xoff in [upright, down]:

y = (position[0] + yoff) % len(square)
x = (position[1] + xoff) % len(square[0])
if square[y][x] == 0:

return magic(square, (y, x), number + 1)

square, position = init(3)
magic(square, position)
print('\n'.join(str(row) for row in square)) 14

Backtracking

Another way to solve the magic square is backtracking.

Backtracking is a general programming pattern or idiom:

while the problem is not solved:
for all possible moves:

if legal move:
for all possible changes:

try a change
call the function recursively
if call was successful:

return True
else:

reset the change
return False

15

Backtracking

Another way to solve the magic square is backtracking.

Backtracking is a general programming pattern or idiom:

while the problem is not solved:
for all possible moves:

if legal move:
for all possible changes:

try a change
call the function recursively
if call was successful:

return True
else:

reset the change
return False20

17
-0

5-
10

Python Packages

Backtracking

It can be applied to many problems: Sudoku solving, mazes (see exercise
sheet), N-queens, . . .

Magic squares with backtracking

def magic(square, position, number=1):
if solved(square):

return True
for yoff, xoff in [(-1, 1), (1, 0)]:

y = (position[0] + yoff) % len(square)
x = (position[1] + xoff) % len(square[0])
if square[y][x] == 0:

square[y][x] = number + 1
if magic(square, (y, x), number + 1):

return True
else:

square[y][x] = 0
return False

16

Magic squares with backtracking

def magic(square, position, number=1):
if solved(square):

return True
for yoff, xoff in [(-1, 1), (1, 0)]:

y = (position[0] + yoff) % len(square)
x = (position[1] + xoff) % len(square[0])
if square[y][x] == 0:

square[y][x] = number + 1
if magic(square, (y, x), number + 1):

return True
else:

square[y][x] = 0
return False

20
17

-0
5-

10
Python Packages

Magic squares with backtracking

Even though this code is much longer than the solution before, I chose it
as an easy to follow example for backtracking.

Note that the initialization now needs to already put the 1 into the first
position.

For a complete example, take a look at the accompanying
magicsquare_bt.py.

Organizing code

Or: How to write code that others (and my future me) understand?

• use sufficient documentation and comments # covered last
week

• use functions # also covered
• use modules # now more of this!

17

Documentation and comments

Open spyder, run one of your files, e.g. the iris_statistics.py.

Type help(functionname) – you can now see the documentation
of that function.

18

Function arguments

The help function takes a function as an argument. Wait, what? A
function?

Try:

def fun():
return 'Hello'

hello = fun
print(hello())

Output:

Hello

19

Function arguments

The help function takes a function as an argument. Wait, what? A
function?

Try:

def fun():
return 'Hello'

hello = fun
print(hello())

Output:

Hello20
17

-0
5-

10
Python Packages

Function arguments

• Functions are just objects which also have a name, just like variables.
• The difference is that functions are callable, that means we can use

function(...) to execute the code behind it.

Functions as variables

Spyder hides functions (and modules) in its variable explorer, but we can
view them by unchecking Exclude unsupported data types in the menu.

Figure 1: Spyder’s variable explorer
20

Functions as variables

Spyder hides functions (and modules) in its variable explorer, but we can
view them by unchecking Exclude unsupported data types in the menu.

Figure 1: Spyder’s variable explorer20
17

-0
5-

10
Python Packages

Functions as variables

You can call help with any of these! Even with modules!

Those without spyder can use this code to check for what is imported:

store = set(globals().copy()) | set(('store',)) import
... # whatever we do in the example ;-)
print(set(globals()).difference(store))

Import

import statistics

help(statistics)

Output:

Help on module statistics:

NAME
statistics - Basic statistics module.

MODULE REFERENCE
https://docs.python.org/3.6/library/statistics

The following documentation is automatically generated from the Python
source files. It may be incomplete, incorrect or include features that
are considered implementation detail and may vary between Python
implementations. When in doubt, consult the module reference at the
location listed above.

DESCRIPTION
This module provides functions for calculating statistics of data, including
averages, variance, and standard deviation.

Calculating averages

================== ===
Function Description
================== ===
mean Arithmetic mean (average) of data.
harmonic_mean Harmonic mean of data.
median Median (middle value) of data.
median_low Low median of data.
median_high High median of data.
median_grouped Median, or 50th percentile, of grouped data.
mode Mode (most common value) of data.
================== ===

Calculate the arithmetic mean ("the average") of data:

>>> mean([-1.0, 2.5, 3.25, 5.75])
2.625

Calculate the standard median of discrete data:

>>> median([2, 3, 4, 5])
3.5

Calculate the median, or 50th percentile, of data grouped into class intervals
centred on the data values provided. E.g. if your data points are rounded to
the nearest whole number:

>>> median_grouped([2, 2, 3, 3, 3, 4]) #doctest: +ELLIPSIS
2.8333333333...

This should be interpreted in this way: you have two data points in the class
interval 1.5-2.5, three data points in the class interval 2.5-3.5, and one in
the class interval 3.5-4.5. The median of these data points is 2.8333...

Calculating variability or spread

================== ===
Function Description
================== ===
pvariance Population variance of data.
variance Sample variance of data.
pstdev Population standard deviation of data.
stdev Sample standard deviation of data.
================== ===

Calculate the standard deviation of sample data:

>>> stdev([2.5, 3.25, 5.5, 11.25, 11.75]) #doctest: +ELLIPSIS
4.38961843444...

If you have previously calculated the mean, you can pass it as the optional
second argument to the four "spread" functions to avoid recalculating it:

>>> data = [1, 2, 2, 4, 4, 4, 5, 6]
>>> mu = mean(data)
>>> pvariance(data, mu)
2.5

Exceptions

A single exception is defined: StatisticsError is a subclass of ValueError.

CLASSES
builtins.ValueError(builtins.Exception)

StatisticsError

class StatisticsError(builtins.ValueError)
| Inappropriate argument value (of correct type).
|
| Method resolution order:
| StatisticsError
| builtins.ValueError
| builtins.Exception
| builtins.BaseException
| builtins.object
|
| Data descriptors defined here:
|
| __weakref__
| list of weak references to the object (if defined)
|
| --
| Methods inherited from builtins.ValueError:
|
| __init__(self, /, *args, **kwargs)
| Initialize self. See help(type(self)) for accurate signature.
|
| __new__(*args, **kwargs) from builtins.type
| Create and return a new object. See help(type) for accurate signature.
|
| --
| Methods inherited from builtins.BaseException:
|
| __delattr__(self, name, /)
| Implement delattr(self, name).
|
| __getattribute__(self, name, /)
| Return getattr(self, name).
|
| __reduce__(...)
| helper for pickle
|
| __repr__(self, /)
| Return repr(self).
|
| __setattr__(self, name, value, /)
| Implement setattr(self, name, value).
|
| __setstate__(...)
|
| __str__(self, /)
| Return str(self).
|
| with_traceback(...)
| Exception.with_traceback(tb) --
| set self.__traceback__ to tb and return self.
|
| --
| Data descriptors inherited from builtins.BaseException:
|
| __cause__
| exception cause
|
| __context__
| exception context
|
| __dict__
|
| __suppress_context__
|
| __traceback__
|
| args

FUNCTIONS
harmonic_mean(data)

Return the harmonic mean of data.

The harmonic mean, sometimes called the subcontrary mean, is the
reciprocal of the arithmetic mean of the reciprocals of the data,
and is often appropriate when averaging quantities which are rates
or ratios, for example speeds. Example:

Suppose an investor purchases an equal value of shares in each of
three companies, with P/E (price/earning) ratios of 2.5, 3 and 10.
What is the average P/E ratio for the investor's portfolio?

>>> harmonic_mean([2.5, 3, 10]) # For an equal investment portfolio.
3.6

Using the arithmetic mean would give an average of about 5.167, which
is too high.

If ``data`` is empty, or any element is less than zero,
``harmonic_mean`` will raise ``StatisticsError``.

mean(data)
Return the sample arithmetic mean of data.

>>> mean([1, 2, 3, 4, 4])
2.8

>>> from fractions import Fraction as F
>>> mean([F(3, 7), F(1, 21), F(5, 3), F(1, 3)])
Fraction(13, 21)

>>> from decimal import Decimal as D
>>> mean([D("0.5"), D("0.75"), D("0.625"), D("0.375")])
Decimal('0.5625')

If ``data`` is empty, StatisticsError will be raised.

median(data)
Return the median (middle value) of numeric data.

When the number of data points is odd, return the middle data point.
When the number of data points is even, the median is interpolated by
taking the average of the two middle values:

>>> median([1, 3, 5])
3
>>> median([1, 3, 5, 7])
4.0

median_grouped(data, interval=1)
Return the 50th percentile (median) of grouped continuous data.

>>> median_grouped([1, 2, 2, 3, 4, 4, 4, 4, 4, 5])
3.7
>>> median_grouped([52, 52, 53, 54])
52.5

This calculates the median as the 50th percentile, and should be
used when your data is continuous and grouped. In the above example,
the values 1, 2, 3, etc. actually represent the midpoint of classes
0.5-1.5, 1.5-2.5, 2.5-3.5, etc. The middle value falls somewhere in
class 3.5-4.5, and interpolation is used to estimate it.

Optional argument ``interval`` represents the class interval, and
defaults to 1. Changing the class interval naturally will change the
interpolated 50th percentile value:

>>> median_grouped([1, 3, 3, 5, 7], interval=1)
3.25
>>> median_grouped([1, 3, 3, 5, 7], interval=2)
3.5

This function does not check whether the data points are at least
``interval`` apart.

median_high(data)
Return the high median of data.

When the number of data points is odd, the middle value is returned.
When it is even, the larger of the two middle values is returned.

>>> median_high([1, 3, 5])
3
>>> median_high([1, 3, 5, 7])
5

median_low(data)
Return the low median of numeric data.

When the number of data points is odd, the middle value is returned.
When it is even, the smaller of the two middle values is returned.

>>> median_low([1, 3, 5])
3
>>> median_low([1, 3, 5, 7])
3

mode(data)
Return the most common data point from discrete or nominal data.

``mode`` assumes discrete data, and returns a single value. This is the
standard treatment of the mode as commonly taught in schools:

>>> mode([1, 1, 2, 3, 3, 3, 3, 4])
3

This also works with nominal (non-numeric) data:

>>> mode(["red", "blue", "blue", "red", "green", "red", "red"])
'red'

If there is not exactly one most common value, ``mode`` will raise
StatisticsError.

pstdev(data, mu=None)
Return the square root of the population variance.

See ``pvariance`` for arguments and other details.

>>> pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
0.986893273527251

pvariance(data, mu=None)
Return the population variance of ``data``.

data should be an iterable of Real-valued numbers, with at least one
value. The optional argument mu, if given, should be the mean of
the data. If it is missing or None, the mean is automatically calculated.

Use this function to calculate the variance from the entire population.
To estimate the variance from a sample, the ``variance`` function is
usually a better choice.

Examples:

>>> data = [0.0, 0.25, 0.25, 1.25, 1.5, 1.75, 2.75, 3.25]
>>> pvariance(data)
1.25

If you have already calculated the mean of the data, you can pass it as
the optional second argument to avoid recalculating it:

>>> mu = mean(data)
>>> pvariance(data, mu)
1.25

This function does not check that ``mu`` is actually the mean of ``data``.
Giving arbitrary values for ``mu`` may lead to invalid or impossible
results.

Decimals and Fractions are supported:

>>> from decimal import Decimal as D
>>> pvariance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
Decimal('24.815')

>>> from fractions import Fraction as F
>>> pvariance([F(1, 4), F(5, 4), F(1, 2)])
Fraction(13, 72)

stdev(data, xbar=None)
Return the square root of the sample variance.

See ``variance`` for arguments and other details.

>>> stdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
1.0810874155219827

variance(data, xbar=None)
Return the sample variance of data.

data should be an iterable of Real-valued numbers, with at least two
values. The optional argument xbar, if given, should be the mean of
the data. If it is missing or None, the mean is automatically calculated.

Use this function when your data is a sample from a population. To
calculate the variance from the entire population, see ``pvariance``.

Examples:

>>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]
>>> variance(data)
1.3720238095238095

If you have already calculated the mean of your data, you can pass it as
the optional second argument ``xbar`` to avoid recalculating it:

>>> m = mean(data)
>>> variance(data, m)
1.3720238095238095

This function does not check that ``xbar`` is actually the mean of
``data``. Giving arbitrary values for ``xbar`` may lead to invalid or
impossible results.

Decimals and Fractions are supported:

>>> from decimal import Decimal as D
>>> variance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
Decimal('31.01875')

>>> from fractions import Fraction as F
>>> variance([F(1, 6), F(1, 2), F(5, 3)])
Fraction(67, 108)

DATA
__all__ = ['StatisticsError', 'pstdev', 'pvariance', 'stdev', 'varianc...

FILE
/Users/shoeffner/miniconda3/envs/monty/lib/python3.6/statistics.py

21

Import

import statistics

help(statistics)

Output:

Help on module statistics:

NAME
statistics - Basic statistics module.

MODULE REFERENCE
https://docs.python.org/3.6/library/statistics

The following documentation is automatically generated from the Python
source files. It may be incomplete, incorrect or include features that
are considered implementation detail and may vary between Python
implementations. When in doubt, consult the module reference at the
location listed above.

DESCRIPTION
This module provides functions for calculating statistics of data, including
averages, variance, and standard deviation.

Calculating averages

================== ===
Function Description
================== ===
mean Arithmetic mean (average) of data.
harmonic_mean Harmonic mean of data.
median Median (middle value) of data.
median_low Low median of data.
median_high High median of data.
median_grouped Median, or 50th percentile, of grouped data.
mode Mode (most common value) of data.
================== ===

Calculate the arithmetic mean ("the average") of data:

>>> mean([-1.0, 2.5, 3.25, 5.75])
2.625

Calculate the standard median of discrete data:

>>> median([2, 3, 4, 5])
3.5

Calculate the median, or 50th percentile, of data grouped into class intervals
centred on the data values provided. E.g. if your data points are rounded to
the nearest whole number:

>>> median_grouped([2, 2, 3, 3, 3, 4]) #doctest: +ELLIPSIS
2.8333333333...

This should be interpreted in this way: you have two data points in the class
interval 1.5-2.5, three data points in the class interval 2.5-3.5, and one in
the class interval 3.5-4.5. The median of these data points is 2.8333...

Calculating variability or spread

================== ===
Function Description
================== ===
pvariance Population variance of data.
variance Sample variance of data.
pstdev Population standard deviation of data.
stdev Sample standard deviation of data.
================== ===

Calculate the standard deviation of sample data:

>>> stdev([2.5, 3.25, 5.5, 11.25, 11.75]) #doctest: +ELLIPSIS
4.38961843444...

If you have previously calculated the mean, you can pass it as the optional
second argument to the four "spread" functions to avoid recalculating it:

>>> data = [1, 2, 2, 4, 4, 4, 5, 6]
>>> mu = mean(data)
>>> pvariance(data, mu)
2.5

Exceptions

A single exception is defined: StatisticsError is a subclass of ValueError.

CLASSES
builtins.ValueError(builtins.Exception)

StatisticsError

class StatisticsError(builtins.ValueError)
| Inappropriate argument value (of correct type).
|
| Method resolution order:
| StatisticsError
| builtins.ValueError
| builtins.Exception
| builtins.BaseException
| builtins.object
|
| Data descriptors defined here:
|
| __weakref__
| list of weak references to the object (if defined)
|
| --
| Methods inherited from builtins.ValueError:
|
| __init__(self, /, *args, **kwargs)
| Initialize self. See help(type(self)) for accurate signature.
|
| __new__(*args, **kwargs) from builtins.type
| Create and return a new object. See help(type) for accurate signature.
|
| --
| Methods inherited from builtins.BaseException:
|
| __delattr__(self, name, /)
| Implement delattr(self, name).
|
| __getattribute__(self, name, /)
| Return getattr(self, name).
|
| __reduce__(...)
| helper for pickle
|
| __repr__(self, /)
| Return repr(self).
|
| __setattr__(self, name, value, /)
| Implement setattr(self, name, value).
|
| __setstate__(...)
|
| __str__(self, /)
| Return str(self).
|
| with_traceback(...)
| Exception.with_traceback(tb) --
| set self.__traceback__ to tb and return self.
|
| --
| Data descriptors inherited from builtins.BaseException:
|
| __cause__
| exception cause
|
| __context__
| exception context
|
| __dict__
|
| __suppress_context__
|
| __traceback__
|
| args

FUNCTIONS
harmonic_mean(data)

Return the harmonic mean of data.

The harmonic mean, sometimes called the subcontrary mean, is the
reciprocal of the arithmetic mean of the reciprocals of the data,
and is often appropriate when averaging quantities which are rates
or ratios, for example speeds. Example:

Suppose an investor purchases an equal value of shares in each of
three companies, with P/E (price/earning) ratios of 2.5, 3 and 10.
What is the average P/E ratio for the investor's portfolio?

>>> harmonic_mean([2.5, 3, 10]) # For an equal investment portfolio.
3.6

Using the arithmetic mean would give an average of about 5.167, which
is too high.

If ``data`` is empty, or any element is less than zero,
``harmonic_mean`` will raise ``StatisticsError``.

mean(data)
Return the sample arithmetic mean of data.

>>> mean([1, 2, 3, 4, 4])
2.8

>>> from fractions import Fraction as F
>>> mean([F(3, 7), F(1, 21), F(5, 3), F(1, 3)])
Fraction(13, 21)

>>> from decimal import Decimal as D
>>> mean([D("0.5"), D("0.75"), D("0.625"), D("0.375")])
Decimal('0.5625')

If ``data`` is empty, StatisticsError will be raised.

median(data)
Return the median (middle value) of numeric data.

When the number of data points is odd, return the middle data point.
When the number of data points is even, the median is interpolated by
taking the average of the two middle values:

>>> median([1, 3, 5])
3
>>> median([1, 3, 5, 7])
4.0

median_grouped(data, interval=1)
Return the 50th percentile (median) of grouped continuous data.

>>> median_grouped([1, 2, 2, 3, 4, 4, 4, 4, 4, 5])
3.7
>>> median_grouped([52, 52, 53, 54])
52.5

This calculates the median as the 50th percentile, and should be
used when your data is continuous and grouped. In the above example,
the values 1, 2, 3, etc. actually represent the midpoint of classes
0.5-1.5, 1.5-2.5, 2.5-3.5, etc. The middle value falls somewhere in
class 3.5-4.5, and interpolation is used to estimate it.

Optional argument ``interval`` represents the class interval, and
defaults to 1. Changing the class interval naturally will change the
interpolated 50th percentile value:

>>> median_grouped([1, 3, 3, 5, 7], interval=1)
3.25
>>> median_grouped([1, 3, 3, 5, 7], interval=2)
3.5

This function does not check whether the data points are at least
``interval`` apart.

median_high(data)
Return the high median of data.

When the number of data points is odd, the middle value is returned.
When it is even, the larger of the two middle values is returned.

>>> median_high([1, 3, 5])
3
>>> median_high([1, 3, 5, 7])
5

median_low(data)
Return the low median of numeric data.

When the number of data points is odd, the middle value is returned.
When it is even, the smaller of the two middle values is returned.

>>> median_low([1, 3, 5])
3
>>> median_low([1, 3, 5, 7])
3

mode(data)
Return the most common data point from discrete or nominal data.

``mode`` assumes discrete data, and returns a single value. This is the
standard treatment of the mode as commonly taught in schools:

>>> mode([1, 1, 2, 3, 3, 3, 3, 4])
3

This also works with nominal (non-numeric) data:

>>> mode(["red", "blue", "blue", "red", "green", "red", "red"])
'red'

If there is not exactly one most common value, ``mode`` will raise
StatisticsError.

pstdev(data, mu=None)
Return the square root of the population variance.

See ``pvariance`` for arguments and other details.

>>> pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
0.986893273527251

pvariance(data, mu=None)
Return the population variance of ``data``.

data should be an iterable of Real-valued numbers, with at least one
value. The optional argument mu, if given, should be the mean of
the data. If it is missing or None, the mean is automatically calculated.

Use this function to calculate the variance from the entire population.
To estimate the variance from a sample, the ``variance`` function is
usually a better choice.

Examples:

>>> data = [0.0, 0.25, 0.25, 1.25, 1.5, 1.75, 2.75, 3.25]
>>> pvariance(data)
1.25

If you have already calculated the mean of the data, you can pass it as
the optional second argument to avoid recalculating it:

>>> mu = mean(data)
>>> pvariance(data, mu)
1.25

This function does not check that ``mu`` is actually the mean of ``data``.
Giving arbitrary values for ``mu`` may lead to invalid or impossible
results.

Decimals and Fractions are supported:

>>> from decimal import Decimal as D
>>> pvariance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
Decimal('24.815')

>>> from fractions import Fraction as F
>>> pvariance([F(1, 4), F(5, 4), F(1, 2)])
Fraction(13, 72)

stdev(data, xbar=None)
Return the square root of the sample variance.

See ``variance`` for arguments and other details.

>>> stdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
1.0810874155219827

variance(data, xbar=None)
Return the sample variance of data.

data should be an iterable of Real-valued numbers, with at least two
values. The optional argument xbar, if given, should be the mean of
the data. If it is missing or None, the mean is automatically calculated.

Use this function when your data is a sample from a population. To
calculate the variance from the entire population, see ``pvariance``.

Examples:

>>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]
>>> variance(data)
1.3720238095238095

If you have already calculated the mean of your data, you can pass it as
the optional second argument ``xbar`` to avoid recalculating it:

>>> m = mean(data)
>>> variance(data, m)
1.3720238095238095

This function does not check that ``xbar`` is actually the mean of
``data``. Giving arbitrary values for ``xbar`` may lead to invalid or
impossible results.

Decimals and Fractions are supported:

>>> from decimal import Decimal as D
>>> variance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
Decimal('31.01875')

>>> from fractions import Fraction as F
>>> variance([F(1, 6), F(1, 2), F(5, 3)])
Fraction(67, 108)

DATA
__all__ = ['StatisticsError', 'pstdev', 'pvariance', 'stdev', 'varianc...

FILE
/Users/shoeffner/miniconda3/envs/monty/lib/python3.6/statistics.py

20
17

-0
5-

10
Python Packages

Import

In order to have a function or module available, we need to import it.

Import

Importing a module means to execute everything “global”:

• Function definitions are common
• Statements which are not inside a function
• etc.

22

Import

Importing a module means to execute everything “global”:

• Function definitions are common
• Statements which are not inside a function
• etc.

20
17

-0
5-

10
Python Packages

Import

This is one of the reasons we can think of function names as variables, as
the import just “passes them along”.

Python path

We can check our python path, i.e. where python searches for modules:

import sys
print(sys.path)

Output:

['',
'/Users/shoeffner/miniconda3/envs/monty/lib/python36.zip',
'/Users/shoeffner/miniconda3/envs/monty/lib/python3.6',
'/Users/shoeffner/miniconda3/envs/monty/lib/python3.6/lib-dynload',
'/Users/shoeffner/miniconda3/envs/monty/lib/python3.6/site-packages',
'/Users/shoeffner/miniconda3/envs/monty/lib/python3.6/site-packages/Sphinx-1.5.1-py3.6.egg',
'/Users/shoeffner/Projects/pandoc-source-exec',
'/Users/shoeffner/miniconda3/envs/monty/lib/python3.6/site-packages/setuptools-27.2.0-py3.6.egg']

23

Python path

We can check our python path, i.e. where python searches for modules:

import sys
print(sys.path)

Output:

['',
'/Users/shoeffner/miniconda3/envs/monty/lib/python36.zip',
'/Users/shoeffner/miniconda3/envs/monty/lib/python3.6',
'/Users/shoeffner/miniconda3/envs/monty/lib/python3.6/lib-dynload',
'/Users/shoeffner/miniconda3/envs/monty/lib/python3.6/site-packages',
'/Users/shoeffner/miniconda3/envs/monty/lib/python3.6/site-packages/Sphinx-1.5.1-py3.6.egg',
'/Users/shoeffner/Projects/pandoc-source-exec',
'/Users/shoeffner/miniconda3/envs/monty/lib/python3.6/site-packages/setuptools-27.2.0-py3.6.egg']

20
17

-0
5-

10
Python Packages

Python path

We can import from anywhere inside our python path.

Notice the '' (empty string) as the first element. That’s basically “the
current working directory”.

Python searches in all of these from the first to the last for modules you
try to import. As soon as it finds a match, that module is imported.

Of course, on your computers it will look different than what you see here.

Writing our own modules

File: reader.py

def read_data(filename):
"""Reads a comma separated file into a list of lists.
Each sublist contains floats.

Args:
filename: the file to read.

Returns:
A list of lists containing floats, e.g.:
[[1., 2., 1.4],
[2., 1.4, 3.]]

"""
with open(filename, 'r') as in_file:

data = in_file.read().splitlines()
for i, row in enumerate(data):

data[i] = [float(x) for x in row.split(',')]
return data

24

Writing our own modules

File: reader.py

def read_data(filename):
"""Reads a comma separated file into a list of lists.
Each sublist contains floats.

Args:
filename: the file to read.

Returns:
A list of lists containing floats, e.g.:
[[1., 2., 1.4],
[2., 1.4, 3.]]

"""
with open(filename, 'r') as in_file:

data = in_file.read().splitlines()
for i, row in enumerate(data):

data[i] = [float(x) for x in row.split(',')]
return data20

17
-0

5-
10

Python Packages

Writing our own modules

This is now a module containing one function.

Using a module

File: printer.py

import reader

data = reader.read_data('example.data')
print(data)

Output:

[[1.0, 2.0, 1.4], [2.0, 1.4, 3.0], [4.5, 1.3, 5.2]]

25

Using a module

File: printer.py

import reader

data = reader.read_data('example.data')
print(data)

Output:

[[1.0, 2.0, 1.4], [2.0, 1.4, 3.0], [4.5, 1.3, 5.2]]

20
17

-0
5-

10
Python Packages

Using a module

Using the import statement it is possible to employ functions from
another file.

Notice that we used import reader and not import reader.py! We
are only interested in the name, not in the type.

To call the function, we need to specify the module name and the function
name: The module name is just the name of the Python file:
module.function(), here reader.read_data(...).

Reusing a function: directory structure

File: printer.py

import reader

data = reader.read_data('example.data')
print(data)

For this to work, our directory needs to have all files next to each
other2:

wd
reader.py
printer.py
example.data

2wd is the working directory, so where we cd to before running the code.

26

A more complex directory structure

Consider the following directory tree:
wd

lecture
reader.py
printer.py
example.data

It is possible to import lecture.reader. However,
lecture.printer does not work! It uses import reader.

27

A more complex directory structure

Consider the following directory tree:
wd

lecture
reader.py
printer.py
example.data

It is possible to import lecture.reader. However,
lecture.printer does not work! It uses import reader.

20
17

-0
5-

10
Python Packages

A more complex directory structure

Imports are relative to the current directory or to the directories inside the
Python path.

A directory can also be a module if it contains proper Python files, just as
lecture is here.

Import failure

import lecture.reader
import lecture.printer

Output:

Traceback (most recent call last):
File "<string>", line 2, in <module>
File "/Users/shoeffner/Projects/monty/06_Packages/code/lecture/printer.py", line 1, in <module>

import reader
ModuleNotFoundError: No module named 'reader'

28

from ... import ...

Demo!
File: importexamples.py

Imports everything but keeps it inside the namespace of the module.
import os
import statistics

Imports only a specific function or variable
from statistics import mode
from os import uname

Imports everything. Don't use this unless you are sure what you do.
from statistics import *
from os import *

Imports a specific submodule (only works with packages (wait for it))
import os.path
import statistics.mode # This does not work!

29

from ... import ...

Demo!
File: importexamples.py

Imports everything but keeps it inside the namespace of the module.
import os
import statistics

Imports only a specific function or variable
from statistics import mode
from os import uname

Imports everything. Don't use this unless you are sure what you do.
from statistics import *
from os import *

Imports a specific submodule (only works with packages (wait for it))
import os.path
import statistics.mode # This does not work!20

17
-0

5-
10

Python Packages

from ... import ...

We can already see that modules are bundled into meaningful parts.

The statistics modules contains, who would have thought, statistics
functions.

The os module contains a lot of functions handling information from the
operating system (OS). For some parts there is so much (e.g. path
handling) that it even has some submodules (os.path).

__init__.py

To import lecture we can add __init__.py:
wd

lecture
__init__.py
reader.py
printer.py

import lecture.reader
import lecture.printer

30

__init__.py

To import lecture we can add __init__.py:
wd

lecture
__init__.py
reader.py
printer.py

import lecture.reader
import lecture.printer

20
17

-0
5-

10
Python Packages

__init__.py

We are not able to import lecture to gain access to lecture.reader
or lecture.printer. But for the os package this was possible!

If we want to do it properly, we also have to change the import statement
in printer.py. (But we might have done so anyway two slides ago.)

if __name__ == '__main__':

Consider these files a.py, b.py, and c.py next to each other. How often will python
a.py print “Hello World!”, and which ones?

File: a.py

import b
import c

print('Hello World! a')

File: b.py

import c

print('Hello World! b')

File: c.py

def printer():
print('Hello World! d')

print('Hello World! c') 31

if __name__ == '__main__':

File: a.py

import b
import c

print('Hello World! a')

Output:

Hello World! c
Hello World! b
Hello World! a

32

if __name__ == '__main__':

File: a.py

import b
import c

print('Hello World! a')

Output:

Hello World! c
Hello World! b
Hello World! a

20
17

-0
5-

10
Python Packages

if __name__ == '__main__':

Explanation:

• a imports b.
• During b’s import, b in turn imports c.
• c declares a function and prints “Hello World! c”
• b, finishing c’s import, can now print “Hello World! b”
• a can now import c – since b already did that, python does not

execute c again.
• a prints “Hello World! a”

if __name__ == '__main__':

If b and c were modules written by other programmers, would we
expect them to print something during the import?

Most likely not.

33

if __name__ == '__main__':

Each module gets a magic name. It’s accessible via the variable
__name__.

import os
import statistics
import reader # the file we wrote before
print('os name:', os.__name__)
print('statistics name:', statistics.__name__)
print('reader name:', reader.__name__)
print('this name:', __name__)

Output:

os name: os
statistics name: statistics
reader name: reader
this name: __main__

34

if __name__ == '__main__':

Each module gets a magic name. It’s accessible via the variable
__name__.

import os
import statistics
import reader # the file we wrote before
print('os name:', os.__name__)
print('statistics name:', statistics.__name__)
print('reader name:', reader.__name__)
print('this name:', __name__)

Output:

os name: os
statistics name: statistics
reader name: reader
this name: __main__20

17
-0

5-
10

Python Packages

if __name__ == '__main__':

Notice that the file we execute gets the name __main__.

We can use this for a nice trick!

if __name__ == '__main__':

File: mymath.py

def add(a, b):
"""Adds a and b."""
return a + b

if __name__ == '__main__':
assert add(2, 5) == 7, '2 and 5 are not 7'
assert add(-2, 5) == 3, '-2 and 5 are not 3'
print('This executes only if I am main!')

import mymath
print(mymath.add(32, 453))

Output:

485
35

if __name__ == '__main__':

File: mymath.py

def add(a, b):
"""Adds a and b."""
return a + b

if __name__ == '__main__':
assert add(2, 5) == 7, '2 and 5 are not 7'
assert add(-2, 5) == 3, '-2 and 5 are not 3'
print('This executes only if I am main!')

import mymath
print(mymath.add(32, 453))

Output:

48520
17

-0
5-

10
Python Packages

if __name__ == '__main__':

Since the __name__ variable will be __main__ for the script we use, we
can put everything which should not be executed into an if-block.

if __name__ == '__main__':

File: mymath.py

def add(a, b):
"""Adds a and b."""
return a + b

if __name__ == '__main__':
assert add(2, 5) == 7, '2 and 5 are not 7'
assert add(-2, 5) == 3, '-2 and 5 are not 3'
print('This executes only if I am main!')

Output:

This executes only if I am main!

36

Packages

A bundle of several modules is usually called a package.

Figure 2: pypi.python.org3 – the Python package Index

3https://pypi.python.org/pypi

37

https://pypi.python.org/pypi

Packages

A bundle of several modules is usually called a package.

Figure 2: pypi.python.org3 – the Python package Index

3https://pypi.python.org/pypi20
17

-0
5-

10
Python Packages

Packages

While there are lots of packages (> 100,000) online available, many of
them are very specific.

We will mostly work with the core library, as it already has many cool
things.

https://pypi.python.org/pypi

Your sixth homework

• Solve a maze by backtracking.

hw6
mazesolver

io.py
solver.py

solve_maze.py

38

The last slide

Figure 3: Sally Forth (Marciuliano and Keefe 2013)

39

References

Marciuliano, Francesco, and Jim Keefe. 2013. “Maze.” Sally Forth,
October.

40

