Python Packages

Basic Programming in Python

Sebastian Hoffner Aline Vilks
Wed, 10 May 2017

Homework issues

= Code written by others is always hard to read
= Usually complex code can't be read “from top to bottom”

ng files without simply dumbing the data structures

= Don't just print([1, 2, 3], file=somefile)!

= Often libraries (like the csv or json packages) are better

= Sometimes it's still enough to write a custom solution.

= Be careful of line endings. In general Python handles them
correctly if you just use \n, no matter the OS.

File: iris_correction.py

with open('iris.data', 'r') as iris_in, open('iris.csv', 'w') as iris_out:
for i, line in enumerate(iris_in, 1):
if i == 35:
line = '4.9,3.1,1.5,0.2,Iris-setosa\n'
if i == 38:
line = '4.9,3.6,1.4,0.1,Iris-setosa\n'

print(line, file=iris_out, end='"')

Try things out

Download the files accompanying the lecture slides to follow along
today. (Also your homework or our solutions from last week.)

No matplotlib. :-(

Even though it was announced off the record last week: We will not

use matplotlib just yet. Sorry for that.

Agenda for today:

= Two algorithms (Euclidean algorithm and magic square)

= Python packages and modules

2017-05-10

Python Packages

L No matplotlib. =(

Even though it was announced: We will not use matplotlib just yet.

Instead | will for the next two weeks or more focus more on programming —

in Python and in general.

This will, or so | hope, make it much easier for you to use any “library”
like matplotlib in the future and make you better programmers even

when you don't use Python for future projects.

Euclidean algorithm

Given two natural numbers, find their greatest common divisor?.

It's a simple task for e.g. 12 and 8:
12=12-1=6-2=4-3=3-2-28=8:-1=4.2=2.2.2

gcd(12,8) = max ({12,6,4,3,2,1} N {8,4,2,1}) (1)
= max {4,2,1} (2)
4 ©

'That is the number which divides both numbers and without remainder, i.e. if
ged(a, b) = ¢ then c is the maximum value for which holds that a mod ¢ =0
and b mod ¢ =0.

Euclidean algorithm

It's tedious for big numbers to write down all factorizations and

compare the sets.
Euclid had a nice idea which can be summarized as follows:

To find the greatest common divisor (gcd) of two integers,
a and b, find out which one is smaller. Then subtract it
from the other one as long as the result will be greater
than 0. Swap the numbers, as now the other one will be
smaller and do the same. Continue until you reach 0: the

remaining number is the gcd.

Euclidean algorithm

1. a=2329,b=2091

2. Since a > b: a— b = 2329 — 2091 = 238. Repeat but use 2091
and 238 now.

3. 2091 > 238: 2091 — 238 = 1851. Keep going:

1851 — 238 = 1615. Shortcut: 2091 — (8 - 238) = 187.

238 > 187: 238 — 187 =51

187 > 51: 187 — (3-51) = 34

51 —-34 =17

34 —-17=17"

Since 17 = 17, the result is: 17

© N o s

Euclidean algorithm

def gcd(a, b):
while a != b:
if a > b:
else:
return a

print (gcd (2329, 2091))

Output:

17

2017-05-10

Python Packages

L Euclidean algorithm

Do you notice that subtracting b again and again until it would fall below

0 is nothing else but taking the modulo? Maybe we can improve on that.

Euclidean algorithm

def gcd(a, b):
while b != O:
a, b=D>b, a’%b

return a

print (gcd (2329, 2091))

Output:

17

10

2017-05-10

Python Packages

L Euclidean algorithm

a, b = b, ais a nice Python feature to swap values.

Euclidean algorithm — recursive

def gcd(a, b):
if b !'= 0:
return gcd(b, a % b)
return a

print(gcd (2329, 2091))

Output:

17

def gcd(a, b):
return a if not b else gcd(b, a % b)

print(ged (2329, 2091))

Output:

17

11

2017-05-10

Python Packages

L Euclidean algorithm — recursive

Do you remember that 0 is evaluated to False in Python? So not b is
essentially the same as b ==

a if condition else b is a conditional expression and evaluates to a if
the condition is True, otherwise it becomes b. Although it only
describes the type of operator ternary operator is often used when talking

about this specific form of conditional expression.

This is a magic square of order n = 3:

B~ W oo
O o1 =
N N O

It uses exactly all numbers from 1 to n?, where n x n is the size of
the square.
All rows, columns and the main diagonals sum up to the same value

(15).

12

We can follow a nice algorithm to construct one for odd orders (i.e.
n=1n=3,...):

1. Write a 1 into the middle of the first row.
That space is now the current space.
2. Test if the upper right neighbor is empty.
3. If it is: write the next number into that space.
That space is now the current space.
4. If it is not: test if the bottom neighbor is empty.
5. If it is: write next number into that space.
That space is now the current space.

6. If it is not: You are done.
7. Continue with step 2.

13

Magic squares

File: magicsquare.py

upright = (-1, 1)
down = (1, 0)

def init(order):
return [[0] * order for i in range(order)], (0, order // 2)

def magic(square, position, number=1):
square [position[0]] [position[1]] = number
for yoff, xoff in [upright, down]:
y = (position[0] + yoff) % len(square)
x = (position[1] + xoff) % len(square[0])
if squarel[y][x] ==
return magic(square, (y, x), number + 1)

square, position = init(3)
magic(square, position)
print('\n'.join(str(row) for row in square)) 14

Backtracking

Another way to solve the magic square is backtracking.

Backtracking is a general programming pattern or idiom:

while the problem is not solved:
for all possible moves:
if legal move:
for all possible changes:
try a change
call the function recursively
if call was successful:
return True
else:

reset the change
return False

15

2017-05-10

Python Packages

LBacktracking

It can be applied to many problems: Sudoku solving, mazes (see exercise

sheet), N-queens, ...

Magic squares with backtracking

def magic(square, position, number=1):
if solved(square):
return True
for yoff, xoff in [(-1, 1), (1, 0)]:
y = (position[0] + yoff) J len(square)
x = (position[1] + xoff) % len(square[0])
if squarely][x] == O:
square[y] [x] = number + 1
if magic(square, (y, x), number + 1):
return True
else:
square [yl [x] = 0
return False

16

2017-05-10

Python Packages

LMagic squares with backtracking

Even though this code is much longer than the solution before, | chose it
as an easy to follow example for backtracking.

Note that the initialization now needs to already put the 1 into the first
position.

For a complete example, take a look at the accompanying

magicsquare_bt.py.

Organizing code

Or: How to write code that others (and my future me) understand?

use sufficient documentation and comments # covered last
week

= use functions # also covered

= use modules # now more of this!

17

Documentation and comments

Open spyder, run one of your files, e.g. the iris_statistics.py.

Type help(functionname) — you can now see the documentation
of that function.

18

Function arguments

The help function takes a function as an argument. Wait, what? A
function?

Try

def fun():

return 'Hello'
hello = fun
print (hello())

Output:

Hello

19

2017-05-10

Python Packages

L Function arguments

= Functions are just objects which also have a name, just like variables.
= The difference is that functions are callable, that means we can use
function(...) to execute the code behind it.

Functions as variables

Spyder hides functions (and modules) in its variable explorer, but we can
view them by unchecking Exclude unsupported data types in the menu.

00 Variable explorer

& B 5 &%
Name A Type size ~ Exclude private references I

. . v Exclude all- uppercase references

count_occurences function 1 class 'function Excl ni od-references

G5y Todule 1 class 'module’ Exclude unsupported data types

main function 1 class 'function' Show arrays min/max

make_data_numeric function 1 class 'function'

mean function 1 class 'function'

median function 1 class 'function'

mode function 1 class 'function'

os module 1 class 'module'

Vari xpll File explorer Help

Figure 1: Spyder's variable explorer
20

2017-05-10

Python Packages

L Functions as variables

You can call help with any of these! Even with modules!
Those without spyder can use this code to check for what is imported:
store = set(globals().copy()) | set(('store',)) import

whatever we do in the example ;-)

print (set(globals()) .difference(store))

IIIHIHEHHIII

import statistics
help(statistics)

Output:

Help on module statistics:

NAME

statistics - Basic statistics module.

MODULE REFERENCE
https://docs.python.org/3.6/library/statistics

The following documentation is automatically generated

Y ~ Pk [R TR S . AR [T P T R, [

2017-05-10

Python Packages

leport

In order to have a function or module available, we need to import it.

Importing a module means to execute everything “global”:

= Function definitions are common
= Statements which are not inside a function
= etc.

22

2017-05-10

Python Packages

leport

This is one of the reasons we can think of function names as variables, as

the import just “passes them along".

Python path

We can check our python path, i.e. where python searches for modules:

import sys

print(sys.path)

Output:

L',
' /Users/shoeffner/miniconda3/envs/monty/lib/python36.zip",
' /Users/shoeffner/miniconda3/envs/monty/lib/python3.6"',
' /Users/shoeffner/miniconda3/envs/monty/lib/python3.6/1lib-dynload',
' /Users/shoeffner/miniconda3/envs/monty/lib/python3.6/site-packages',
' /Users/shoeffner/miniconda3/envs/monty/lib/python3.6/site-packages/Sphinx-1.5
' /Users/shoeffner/Projects/pandoc-source-exec',

' /Users/shoeffner/miniconda3/envs/monty/lib/python3.6/site-packages/setuptools

23

2017-05-10

Python path
We can check our pythan path, .. where python serches for modules:

Python Packages

LPython path

We can import from anywhere inside our python path.

Notice the "' (empty string) as the first element. That's basically “the
current working directory".

Python searches in all of these from the first to the last for modules you
try to import. As soon as it finds a match, that module is imported.

Of course, on your computers it will look different than what you see here.

Writing our own modules

File: reader.py

def read_data(filename):
"""Reads a comma separated file into a list of lists.

Each sublist contains floats.

Args:

filename: the file to read.

Returns:
A list of lists containing floats, e.g.:
[[1., 2., 1.4],
[2., 1.4, 3.1
with open(filename, 'r') as in_file:
data = in_file.read().splitlines()
for i, row in enumerate(data):
data[i] = [float(x) for x in row.split(',')]
return data

24

2017-05-10

Python Packages

LWriting our own modules

This is now a module containing one function.

Using a module

File: printer.py

import reader

data = reader.read_data('example.data')

print(data)

Output:

(f1.0, 2.0, 1.4], [2.0, 1.4, 3.0], [4.5, 1.3, 5.2]]

25

2017-05-10

Python Packages

LUsing; a module

Using the import statement it is possible to employ functions from
another file.

Notice that we used import reader and not import reader.py! We
are only interested in the name, not in the type.

To call the function, we need to specify the module name and the function
name: The module name is just the name of the Python file:

module.function(), here reader.read_data(...).

Reusing a function: directory structure

File: printer.py

import reader

data = reader.read_data('example.data')
print(data)

For this to work, our directory needs to have all files next to each
other?:
wd
reader.py
printer.py
example.data

2wd is the working directory, so where we cd to before running the code.

26

A more complex directory structure

Consider the following directory tree:

wd
Lflecture
reader.py
printer.py

example.data

It is possible to import lecture.reader. However,

lecture.printer does not work! It uses import reader

27

2017-05-10

Python Packages

LA more complex directory structure

Imports are relative to the current directory or to the directories inside the
Python path.

A directory can also be a module if it contains proper Python files, just as

lecture is here.

Import failure

import lecture.reader

import lecture.printer

Output:

Traceback (most recent call last):
File "<string>", line 2, in <module>
File "/Users/shoeffner/Projects/monty/06_Packages/code/lecture/printer.py", 1
import reader
ModuleNotFoundError: No module named 'reader'

28

from ... import ...

Demo!
File: importexamples.py

Imports everything but keeps it inside the namespace of the module.
import os

import statistics

Imports only a specific function or wvartiable
from statistics import mode
from os import uname

Imports everything. Don't use this unless you are sure what you do.
from statistics import *

from os import *
Imports a specific submodule (only works with packages (wait for it))

import os.path
import statistics.mode # This does mot work!

29

2017-05-10

Python Packages

from ... import

We can already see that modules are bundled into meaningful parts.

The statistics modules contains, who would have thought, statistics
functions.

The os module contains a lot of functions handling information from the
operating system (OS). For some parts there is so much (e.g. path

handling) that it even has some submodules (os.path).

__init__.py

To import lecture we can add __init__.py:

wd
Lflecture
__init__.py
reader.py
printer.py

import lecture.reader

import lecture.printer

30

2017-05-10

Python Packages

L__init__ .Py

We are not able to import lecture to gain access to lecture.reader
or lecture.printer. But for the os package this was possible!

If we want to do it properly, we also have to change the import statement

in printer.py. (But we might have done so anyway two slides ago.)

Consider these files a.py, b.py, and c.py next to each other. How often will python
a.py print “Hello World!"”, and which ones?

File: a.py

import b
import c

print('Hello World! a')

File: b.py
import c
print('Hello World! b')

File: c.py

def printer():
print('Hello World! 4')

print('Hello World! c') 31

File: a.py

import b

import c

print('Hello World! a')

Output:

Hello World! c
Hello World! b
Hello World! a

32

2017-05-10

Python Packages

Lif __name__ == '_ main__':

Explanation:

= a imports b.

= During b’s import, b in turn imports c.

= ¢ declares a function and prints “Hello World! c”

= b, finishing c’s import, can now print “Hello World! b"

= a can now import ¢ — since b already did that, python does not
execute c again.

”

= a prints “Hello World! a

If b and ¢ were modules written by other programmers, would we

expect them to print something during the import?

Most likely not.

33

Each module gets a magic name. It's accessible via the variable

__hame__

import os
import statistics

import reader # the file we wrote before

print('os name:', os.__name__)
print('statistics name:', statistics.__name__)
print('reader name:', reader.__name__)
print('this name:', __name__)

Output:

oS name: oS
statistics name: statistics
reader name: reader
this name: __main__

34

2017-05-10

Python Packages

Lif __name__ == '_ main__':

Notice that the file we execute gets the name __main__.

We can use this for a nice trick!

File: mymath.py

def add(a, b):

if

nnnpdds a and b. """

return a + b

__name__ == '__main__
assert add(2, 5) == 7, '2 and 5 are not 7'
assert add(-2, 5) == 3, '-2 and 5 are not 3'

print('This executes only if I am main!')

import mymath
print (mymath.add (32, 453))

Output:

485

35

2017-05-10

Python Packages

Lif __name__ == '_ main__':

Since the __name__ variable will be __main__ for the script we use, we

can put everything which should not be executed into an if-block.

File: mymath.py

def add(a, b):
nnngdds a and b. """
return a + b

if __name__ == '__main__"':
assert add(2, 5) == 7, '2 and 5 are not 7'
assert add(-2, 5) == 3, '-2 and 5 are not 3'

print('This executes only if I am main!')

Output:

This executes only if I am main!

36

Packages

A bundle of several modules is usually called a package.

@ python

PACKAGE INDEX
Browse packages
Package submission
List trove classifiers
RSS (latest 40 updates)
RSS (newest 40 packages)
Terms of Service
PyPI Tutorial
PyPI Security
PyPI Support
PyPI Bug Reports
PyPI Discussion
PyPI Developer Info

ABOUT
NEWS
DOCUMENTATION

» Package Index

PyPI - the Python Package
Index

The Python Package Index is a repository
of software for the Python programming
language. There are currently 107654
packages here.

To contact the PyP! admins, please use
the Support or Bug reports links.

search|

Login

Register

Lost Login?

Use OpeniD |

Login with Google @

Nothing to report

Get Packages Package Authors

To use a package from ‘Submit packages with
this index either "pip "python setup.py
install package” (get upload". The index
i) e draminan hcte nankana Aane

Figure 2: pypi.python.org® — the Python package Index

3https://pypi.python.org/pypi

37

https://pypi.python.org/pypi

2017-05-10

Python Packages

LPackages

While there are lots of packages (> 100,000) online available, many of
them are very specific.

We will mostly work with the core library, as it already has many cool

things.

https://pypi.python.org/pypi

Your sixth homework

= Solve a maze by backtracking.

hwé
mazesolver

kio.py
solver.py

solve_maze.py

38

The last slide

OKAY, I RECOGNIZE
THIS PART OF THE MAZE.

HOWZ IT'S ALL JUST
STALKS!

ANYONE ELSE |~ MNICE CLASSICAL
REFERENCE, HIL,
KINDA HOPING AND | REFERERCE, HE
WE NEED TO DO IF WE'RE | KINDA SCARED THERE'S N BU1L L 2
GOING TO APPROACH THIS A MINOTAUR IN THE J
_MAZE WITH FRESH EYES. /3 MIDDLE OF ALL 4

g WHAT I MEAN IS WE'RE
5 [BACKTRACKING, WHICH IS WHAT

g

A

s, w2

=

=<3

L BN

_ . 5

Figure 3: Sally Forth (Marciuliano and Keefe 2013)

39

References

Marciuliano, Francesco, and Jim Keefe. 2013. “Maze.” Sally Forth,
October.

40

