
Exercise Sheet 06 Solutions – Python Packages

Sebastian Höffner Aline Vilks

Deadline: Mon, 15 May 2017 08:00 +0200

Exercise 1: Mouse in the maze

File: __init__.py
Errata:
Instead of using these two statements:
#
import mazesolver.io
import mazesolver.solver
#
It is besser to use the directory relative statements:

from . import io
from . import solver

This basically allows to import mazesolver in the following directory
structure:
#
working_directory
- solution
- mazesolver
- __init__.py
- io.py
- solver.py
#
With the above mentioned imports, it's impossible to do:
#
import solution.mazesolver
#
The corrected version with the dot notation (from . import...) allows this.
#
For more information, please refer to PEP 328:
#

1

https://www.python.org/dev/peps/pep-0328/
#

File: io.py
"""This module handles the mazesolver's input and output.

Mainly this means printing to the terminal and reading the
starting configurations.
"""

import sys

def load_maze(filename):
"""Loads a maze.

Loads a maze from a given filename.

A maze file contains the layout of the maze as rows of numbers separated by
spaces. The numbers encode the following:

0: Empty space.
1: Starting position.
2: Wall space (not accessible).
3: Cheese position.

Note that only exactly one 1 and one 3 are allowed. (This is not checked.)

Args:
filename: The file to be read.

Returns:
A list containing a list per line.
For example if the file contained:

2 2 2 2 2 2
2 1 0 0 3 2
2 2 2 2 2 2

The resulting list would look like this:

[[2, 2, 2, 2, 2, 2],
[2, 1, 0, 0, 3, 2],
[2, 2, 2, 2, 2, 2]]

2

"""
with open(filename, 'r') as maze_file:

lines = maze_file.read().splitlines()
return [[int(x) for x in line.split(' ')] for line in lines]

def print_maze(maze, file=sys.stdout):
"""Prints the maze to the file.

Args:
maze: The maze to print.
file: The file to print to, defaults to sys.stdout.

"""
for row in maze:

print(' '.join([str(v) for v in row]), file=file)

def store_maze(maze, filename):
"""Stores a maze into a file.

The maze is stored in the same layout as described in load_maze(filename).

Args:
maze: A maze as lists of lists.
filename: The file to store the maze in.

"""
with open(filename, 'w') as maze_file:

print_maze(maze, maze_file)

File: solver.py
"""This module handles the maze solving."""

def solve_maze(maze, y, x):
"""Solves a maze recursively.

The maze will be modified in-place!

The maze should be a list of lists (each inner list representing
a row). y and x denote the current position of the mouse, where
y is the row index and x the column index.

The maze solver works with backtracking:

3

If the maze is not solved:
For all directions:

If direction is free (i.e. the maze has a 0 in the next space):
Walk into the direction (set the next space to 1)
Solve the maze from the new position.
If solving was successful:

return True
Otherwise:

Reset the field to 0.
Elif the cheese is found (next space is 3):

return True

Args:
maze: The maze.
y: The mouse row.
x: The mouse column.

Returns:
True if the maze was solved successfully, else False.

"""
if not solved(maze):

for yshift, xshift in [(-1, 0), (0, 1), (1, 0), (0, -1)]:
if not maze[y + yshift][x + xshift]:

maze[y + yshift][x + xshift] = 1
success = solve_maze(maze, y + yshift, x + xshift)
if success:

return True
else:

maze[y + yshift][x + xshift] = 0
elif maze[y + yshift][x + xshift] == 3:

return True
return False

def solved(maze):
"""Checks if the maze was solved.

The maze is solved, if there is no 3 to be found.

Returns:
True if the maze has no 3.

"""
for row in maze:

if 3 in row:
return False

4

return True

def get_start(maze):
"""Searches for the 1 inside the maze.

Returns:
The row and column of the found 1.
E.g. if 1 was in row 3 and column 4, this would return:

3, 4
If there is no 1 in the maze, this returns

-1, -1
"""
for y, row in enumerate(maze):

for x, col in enumerate(row):
if col == 1:

return y, x
return -1, -1

File: solve_maze.py
import os
import sys

import mazesolver

def main():
"""Searches for a possible way inside a maze.

By default it searches the medium_maze, but if started with a program
argument, it will use the provided maze, e.g.:

python solve_maze.py mazes/simple_maze.txt

Prints the loaded maze, solves the maze if possible, and prints a
result or notification about the failure.
"""
maze_file = os.path.join('mazes', 'medium_maze.txt')
if len(sys.argv) > 1:

maze_file = sys.argv[1]

maze = mazesolver.io.load_maze(maze_file)

print('Input')
mazesolver.io.print_maze(maze)

5

y, x = mazesolver.solver.get_start(maze)
if y == -1:

print('No start given!')
return

success = mazesolver.solver.solve_maze(maze, y, x)

if success:
print('Way found!')
mazesolver.io.print_maze(maze)

else:
print('No possible way.')

if __name__ == '__main__':
main()

Output:
Input
2 2 2 2 2 2 2 2 2
2 1 0 0 0 0 0 0 2
2 0 2 0 2 2 0 2 2
2 0 2 0 2 2 0 2 2
2 0 2 0 0 2 2 2 2
2 0 2 0 2 2 2 3 2
2 0 2 2 2 0 0 0 2
2 0 0 0 2 0 0 2 2
2 0 2 2 2 0 0 2 2
2 0 0 0 0 0 0 2 2
2 2 2 2 2 2 2 2 2
Way found!
2 2 2 2 2 2 2 2 2
2 1 0 0 0 0 0 0 2
2 1 2 0 2 2 0 2 2
2 1 2 0 2 2 0 2 2
2 1 2 0 0 2 2 2 2
2 1 2 0 2 2 2 3 2
2 1 2 2 2 1 1 1 2
2 1 0 0 2 1 0 2 2
2 1 2 2 2 1 0 2 2
2 1 1 1 1 1 0 2 2
2 2 2 2 2 2 2 2 2

6

	Exercise 1: Mouse in the maze

