Handling Errors and Debugging

Basic Programming in Python

Sebastian Hoffner Aline Vilks
Wed, 3 May 2017

General tips and tricks for surviving this class

= Check your emails! as | don't send Stud.IP messages to
individuals, only bulk messages. (This is not only useful for this
class)

= Try to make your code runnable. It's okay if they have logical
errors, but after this lecture (if not already) you are able to
read SyntaxErrors.

= Sometimes our solutions might give you valuable hints for how
problems can be alternatively solved. Or they hint at the next
lecture. Or they just give an opportunity to read other people’s
code.

= Download the slides. They contain some additional note slides
which | usually do not present in class. | try to talk about
everything but | sometimes forget things, so be sure to check

them if you solve the homework.
https://sogo.uos.de/

https://sogo.uos.de/

Homework issues: bitwise operators

What is the difference?

a==6
b = 12
print(a == 6 & b == 12)

print(a == 6 and b == 12)
print((a == 6) & (b == 12))

Output:

False
True

True

2017-05-03

Handling Errors and Debugging

L Homework issues: bitwise operators

Long story short: use and where possible, only use bitwise & if you need it.

Bitwise operators have a stronger binding than ==, so 6 & b is evaluated

first. and has a weaker binding and is evaluated after ==.

Homework issues: bitwise & (and)

a 0b000110 # 6

b 0b001100 # 12

print (format(a, '06b'), a)

print (format(b, '06b'), b)
print(format(a & b, '06b'), a & b)

Output:

000110 6
001100 12
000100 4

Homework issues: bitwise | (or)

a 0b000110

b 0b001100

print (format(a, '06b'), a)

print (format(b, '06b'), b)
print(format(a | b, '06b'), a | b)

Output:

000110 6
001100 12
001110 14

2017-05-03

Handling Errors and Debugging

L Homework issues: bitwise | (or)

For completeness for those really interested:

>> shifts all bits to the right, e.g. 4 >> 1 == 2

<< shifts to the left: 2 << 1 ==

" is the exclusive or (XOR): 6 ~ 12 == 10

~ is the negation, which is a little bit confusing as it starts at the
left-most 1 bit.

Homework issues: File 1/0, file mode w

= Opening a file for reading should be done with mode r.

= If you open a file with w, it is cleared.

= If you want to avoid clearing but still write, use a for
appending.

= Or, if you want read and write, use r+.

We will usually work with text files, but if we have binary files
(e.g. images) we might need b as an addition to our mode, e.g.

open(filename, 'rb').

Documentation open()?

2https://docs.python.org/3.6/library /functions.html#open

https://docs.python.org/3.6/library/functions.html#open

2017-05-03

Handling Errors and Debugging

L Homework issues: File 1/O, file mode w

Intermezzo: slides from session 4

https://docs.python.org/3.6/library/functions.html#open

Homework issues: absolute versus relative paths

Absolute paths specify files from the root directory:

/Users/shoeffner/Projects/monty/04_CollectionsFileIO/
code/hangman_words.txt

C:\Users\shoeffner\Documents\Projects\monty\
04_CollectionsFileIO\code\hangman_words.txt

Relative paths specify files relative to the current working directory:

04_CollectionsFileIO/code/hangman_words.txt
hangman_words.txt

2017-05-03

Handling Errors and Debugging

L Homework issues: absolute versus relative paths

You can always assume we have the files in the same directory as the
scripts (unless otherwise mentioned), so just use their names.

Since my script to generate the slides is not too advanced yet, | have to
resort to the slightly longer relative paths as shown on this slide. Sorry for
that, but it makes my life much easier at the moment than fiddling around

with my automation scripts.

Homework issues: relative paths

For this course, always assume files like the hangman_words.txt to
be in the same directory as your scripts.

Relative paths:

= Start not with a / or \ or C:\

= May start with ./ or ../

= Are mostly system independent (i.e. does not contain
shoeffner or similar things)

= Are portable

Homework issues: relative paths with \ and /

import os

filename = os.path.join('code', 'hangman_words.txt')
print (filename)

Output:

code/hangman_words.txt

2017-05-03

Homework issues: relative paths with \ and /

Handling Errors and Debugging

L Homework issues: relative paths with \ and /

For the best portability never use / or \ yourself, but resort to the
os.path module to join paths properly.

However, | use / in the slides for brevity.

Homework issues: variable naming

Do you understand this?

def beklemek(ne_kadar=10, nerede='sandalye'):
numara = 0
while numara < ne_kadar:
print(nerede + 'de oturum')

numara += 1

beklemek(3)

Output:

sandalyede oturum
sandalyede oturum

sandalyede oturum
10

2017-05-03

Handling Errors and Debugging

L Homework issues: variable naming

Try to name your variables, write your comments, prints, etc. all in English.

If you want and time allows we can discuss handling different output

languages in a future session. But it's not really important for us.

Homework issues: variable naming

Can you type this code?

i= 123
i = 4125.23

print(i, @)

Output:

123 4125.23

Where on your keyboard are ¢ and 77

11

2017-05-03

Handling Errors and Debugging

L Homework issues: variable naming

Even though sometimes math symbols hold a lot of information, try to use

only standard ASCII letters and numbers for your variable names.

Error messages

print 'Hello World!'

Output:

File "<string>", line 1
print 'Hello World!'

SyntaxError: Missing parentheses in call to 'print'

12

Reading error messages

File "<stdin>", line 1
print 'Hello World!'

SyntaxError: Missing parentheses in call to 'print'

13

2017-05-03

Handling Errors and Debugging

- Reading error messages

» File "<stdin>", line 1: Location in file

= print 'Hello World!': Faulty line

= “: Where in the line?

= SyntaxError: Error type

= Missing parentheses in call to 'print'

: Description

Longer error messages

def printer():
print(x)

def caller():
printer ()

caller()

Output:

Traceback (most recent call last):
File "<string>", line 7, in <module>
File "<string>", line 5, in caller
File "<string>", line 2, in printer

NameError: name 'x' is not defined 14

2017-05-03

Handling Errors and Debugging

- Longer error messages

= For nested calls, a Traceback is returned
= From top to bottom you can figure out what was called.

SyntaxError: Missing parentheses

print 'Hello World!'

Output:

File "<string>", line 1
print 'Hello World!'

SyntaxError: Missing parentheses in call to 'print'

15

SyntaxError: Missing parentheses

print('Hello World!')

Output:

Hello World!

16

SyntaxError: Invalid Syntax

print("What is "Python"?")

Output:

File "<string>", line 1
print("What is "Python"?")

SyntaxError: invalid syntax

17

SyntaxError: Invalid Syntax

print("What is \"Python\"?")

Output:

What is "Python"?

18

SyntaxError: Unexpected character

print(uAre youn + \|| + "Monty" + \II + ll?ll)

Output:
File "<string>", line 1

prlnt(llAre youll + \ll + IIMontyll + \ll + II’?ll)

SyntaxError: unexpected character after line continuation

(Unexpected character after line continuation character)

19

2017-05-03

Handling Errors and Debugging

LSyn’caxError: Unexpected character

The line continuation character is \.

SyntaxError: Unexpected character

print("Are you \"Monty\"?")

Output:

Are you "Monty"?

20

SyntaxError: EOL® while scanning. ..

string = "Hello World!
print(string)

Output:

File "<string>", line 1
string = "Hello World!

SyntaxError: EOL while scanning string literal

3EOL stands for end of line. Also exists for EOF (end of file).

21

SyntaxError: EOL while scanning. ..

string = "Hello World!"
print(string)

Output:

Hello World!

22

SyntaxError: invalid syntax Il

import turtle
turtle.shape('turtle's=
turtle.forward(100)
turtle.right (90)

Output:

File "<string>", line 4
turtle.right (90)

SyntaxError: invalid syntax

23

SyntaxError: invalid syntax Il

import turtle
turtle.shape('turtle')
turtle.forward(100)
turtle.right (90)

24

Summary SyntaxError

SyntaxErrors occur whenever you type something Python can't
decipher. They are found before the code is actually executed.

Most common causes:

= Missing parentheses
= Missing escape characters or quotes
= Typographical errors

25

TypeError: object is not callable

import random
my_random_number = random()

print (my_random_number ())

Output:
Traceback (most recent call last):

File "<string>", line 2, in <module>
TypeError: 'module' object is not callable

26

TypeError: object is not callable

import random
my_random_number = random.random()

print (my_random_number ())

Output:
Traceback (most recent call last):

File "<string>", line 3, in <module>
TypeError: 'float' object is not callable

27

TypeError: object is not callable

import random
my_random_number = random.random()

print (my_random_number)

Output:

0.7770916527570656

28

TypeError: must be X, not Y

x = 10
print('I have ' + x + ' bottles')

Output:
Traceback (most recent call last):

File "<string>", line 2, in <module>

TypeError: must be str, not int

29

TypeError: must be X, not Y

x = 10
print('I have ' + str(x) + ' bottles')
print('I have', x, 'bottles')

Output:

I have 10 bottles
I have 10 bottles

30

TypeError: X is not iterable

numbers = 5
for x in numbers:

print(x)

Output:
Traceback (most recent call last):

File "<string>", line 2, in <module>
TypeError: 'int' object is not iterable

31

TypeError: X is not iterable

numbers = [5]
for x in numbers:

print(x)

Output:

32

Summary TypeError

TypeErrors occur whenever you try something with an object it
does not support.

Most common causes:
= Calling a module or variable (i.e. putting parentheses behind it)
= Using a dyadic operator on two different types it does not

support
= Using non-iterable types as iterables

33

There is a full list of built-in Python errors* in the documentation.

Some important ones you might encounter:

= IndexError: You tried to access the wrong elements in a list
s KeyError: A dictionary key is not found

s ZeroDivisionError: Don't try 1/0

= NameError/UnboundLocalError: Something is not yet

defined (in the proper scope)

and many, many more.

*https://docs.python.org/3/library/exceptions.html#tconcrete-exceptions
34

https://docs.python.org/3/library/exceptions.html#concrete-exceptions

How to deal with errors?

= Read the error message.

= |If you have an idea where it's from, try to fix it.

= Search the web: Search for the exception type, check the
documentation, etc.

= If you identified the problem: fix it.

= It happens only in one out of 100 iterations? Great, let's check

the debugger!

35

2017-05-03

Handling Errors and Debugging

L How to deal with errors?

Despite what everyone tells you: even though there are debuggers (and
some of them are great!), most of the time a simple print already reveals

your problems. Just don't forget to delete it again!

Debugging

= A debugger allows to stop code during its execution
= We can inspect variables after each step!

36

Interactive Python DeBugger (ipdb)

Me=cE» R

Figure 1: Spyder debug controls: Run/Pause, execute next line, step in,
step out, run to breakpoint, stop

37

Interactive Python debugger

Debug Consoles Projects Tools

Debug 38F5

Step gbF10
Step Into N
Step Return T8
Continue #Br12
Stop +38rF12

Set/Clear breakpoint F12
Set/Edit conditional breakpoint {tr12
Clear breakpoints in all files

List breakpoints

D

Figure 2: Spyder breakpoint controls 38

Live demo

File: code/debug_demo.py

def division(x, y):

return x / y

result = 0
for i in range(16):
denominator = i - 10
result += division(i, denominator)

print (result)

Output:

Traceback (most recent call last):
File "<string>", line 8, in <module>
File "<string>", line 2, in division

ZeroDivisionError: division by zero

39

Avoid errors: assertions

Test your code!

def add(a, b):

return a + b

assert add(4, 5) == 9, 'adding 4 and 5 is not 9'
assert add(3, 4) == 7, 'adding 3 and 4 is not 7'

Syntax: assert condition, failmessage

40

2017-05-03

Handling Errors and Debugging

LAvoid errors: assertions

Use simple examples, complex examples, edge cases. .. test what you
know is correct.

If condition is False, the test fails and the assertion raises an exception,
executing the failmessage.

The fail message is optional, but it helps you to figure out, which assertion
failed.

Assertions are not always useful: It's not really necessary if you just import
a file. But if you do some complex calculations, it is almost always

beneficial. Similar to functions, get a feeling when to use them.

Avoid errors: assertions

def sub(a, b):

return a + b

assert sub(5, 4)
assert sub(7, 3)

1, '5 - 4 1= 1"
4, '7 - 3 1= 4"

Output:
Traceback (most recent call last):

File "<string>", line 4, in <module>

AssertionError: 5 - 4 =1

41

Avoid errors: assertions

def sub(a, b):

return a - b

assert sub(5, 4)
assert sub(7, 3)

1, '5 -4 !'= 1"
=4, '7T -3 !=4"

Output:

42

Avoid errors: documentation

4.6. Sequence Types — list, tuple, range
‘There are three basic sequence types: lsts, tuples, and range objects. Additional sequence types tailored for processing of binary data and text strings are described in dedicated sections.
4.6.1. Common Sequence Operations

The operations in the following table are supported by most sequence types, both mutable and immutable. The collections.abe. Sequence ABC s provided to make it easier to correctly implement these aperations on custom sequence
types.

“This table lists the sequence operations sorted in ascending priority. In the table, s and tare sequences of the same type, n, J jand k are integers and xis an arbitrary object that meets any type and value restrictions imposed by s.

‘The 1n and not. in operations have the same priorities as operations. The + and have the same priority as the corresponding numerlc operations.
Operation Result Notes
xins Tzue if an tem of 5 Is equal to x, else False a
xmot in s False if an item of s1s equal to x, else True &)
st the concatenation of s and t ©17)
equivalent to adding s to tself n times @)
#h item of 5, rigin 0 @
slce of s from 710] @
slice of s from /to /with step k @I6)
length of 5
smallest ftem of 5

max(s) largest item of 5

s.index(xl, 40, 311) index of the first occurrence of xin s (at or after index /and before index) (8)

&.count(x) total number of occurrences of xin 5

Sequences of the same type also support comparisons. In particular, tuples and lists are compared lexicographically by comparing corresponding elements. This means that to compare equal, every element must compare equal and the two
sequences must be of the same type and have the same length. (For full details see Comparisons in the language reference
Notes:

1. While the 1n and not. in operations are used only for simple containment testing in the general case, some specialised sequences (such as stz, byes and bytearzay) also use them for subsequence testing

Figure 3: Python 3.6 documentation

43

2017-05-03

Handling Errors and Debugging

L_Avoid errors: documentation

Reading documentation will make you a better programmer, as it explains
a lot of things.

Imagine you would have to come up with all solutions yourself, or guess
what functions do, etc.

Python documentation is usually very elaborate and exhausting, so it's

almost always worth to give it a try.

Using documentation

Of course there is a lot of documentation on the web, but take a
look at this:

def magic():
"""Returns a magic square of size 3z3."""
return [[2, 7, 6], [9, 5, 1], [4, 3, 8]]

help(magic)

Output:
Help on function magic in module __main__

magic()

Returns a magic square of size 3x3.
44

Using documentation

import turtle

help(turtle.up)

Output:

Help on function up in module turtle:

up ()
Pull the pen up -- no drawing when moving.

Aliases: penup | pu | up
No argument

Example:
>>> penup()

45

Writing documentation

We will roughly follow the Google Python Style Guide®.

There are others, e.g. Scipy® and Python” styles, but we use this.

®https://google.github.io/styleguide/pyguide.html#Comments
®https://github.com /numpy/numpy /blob/master/doc/HOWTO_
DOCUMENT .rst.txt#docstring-standard
"https://docs.python.org/devguide/documenting.html

46

https://google.github.io/styleguide/pyguide.html#Comments
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt#docstring-standard
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt#docstring-standard
https://docs.python.org/devguide/documenting.html

2017-05-03

Handling Errors and Debugging

LWriting documentation

It really does not matter much what you pick, as long as you are
consistent throughout a project.

| recommend the Google style because it has the least amount of visual
clutter in your code.

| hope to discuss how to build beautiful documentation like the Python

docs in a few weeks, the latest when we do the project work.

https://google.github.io/styleguide/pyguide.html#Comments
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt#docstring-standard
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt#docstring-standard
https://docs.python.org/devguide/documenting.html

Writing documentation example

def add(left, right):
"""Returns the sum of left and right.

Args:
left: The left operand.
right: The right operand.

Returns:
The sum of left and right.

nnn

return left + right

47

Writing documentation explanation

def difficult_function(argument, other_arg=None):
"""Concise description.

Longer description (if concise is not enough)

which might need multiple lines.
Or even some paragraphs.

Args:
argument: A description of this argument.
other_arg: Another description.

Returns:
A short summary of what is returned,

especially tts format.

Raises:
ValueError: When does this occur?

mwnn

pass
48

2017-05-03

Handling Errors and Debugging

LWriting documentation explanation

You may omit sections (e.g. Args or Returns) if they are irrelevant for you
function (not all functions raise nor do all have args).

You can find some documentation in the homework solutions of last week.
More example on how to write it (even for features we have not and will

not cover):

http://www.sphinx-doc.org/en/stable/ext/example_google.html

http://www.sphinx-doc.org/en/stable/ext/example_google.html

Your fifth homework

= We wrote a little script, but it's horribly broken. Try to fix it
and add proper documentation.

= Do some simple (very simple!) data analysis on the famous iris
dataset®.

= From now on: Always document your code!

8https://archive.ics.uci.edu/ml/datasets/Iris

49

https://archive.ics.uci.edu/ml/datasets/Iris

The last slide

\Q ")ow I 80‘(be++ef
~ _ at debuggg /S —

Solia Evans
@0k

T4's never magic Realfiy. Even when kmakes no

Sense.
7
Be cnhient 1 o fi AP
befare: g"@ now o lotof

ékemember{he bug is happen ing

Jor a logical reason

istochard hard bugs
@ Talk 4o ~y Couorkers kefore
l% Know my debugging teolkit. ho!

W
T
before 2 LT knou ! ‘
know $THING Z!1 w3 tepoump!
bot idk how 4
Find out

@ most importantly ;T leancd to lke it more.

before. N0 /T thiak T
& Q about o
/7 Jearn something
X el \

explessn
determnation

Figure 4: how | got better at debugging (Evans 2016) 50

References

Evans, Julia. 2016. “"How | Got Better at Debugging.” Julia’s
Drawings, November.

51

