
Collections and File I/O
Basic Programming in Python

Sebastian Höffner Aline Vilks
Wed, 26 Apr 2017

1

Homework issues: scope

counter = 0
def count_up():

counter = counter + 1

count_up()
print(counter)

Output:

Traceback (most recent call last):
File "<string>", line 5, in <module>
File "<string>", line 3, in count_up

UnboundLocalError: local variable 'counter' referenced before assignment

2

Homework issues: scope

Python has several scopes, relevant to us are:

• local (inside functions)
• global (inside “modules” or for now: scripts)
• built-in (what Python itself offers: len, range, . . .)

3

Homework issues: scope

Python has several scopes, relevant to us are:

• local (inside functions)
• global (inside “modules” or for now: scripts)
• built-in (what Python itself offers: len, range, . . .)

20
17

-0
4-

26
Collections and File I/O

Homework issues: scope

If a variable name is used inside multiple scopes, “local” is the strongest
scope.

Try not to overwrite built-in variables (your editor marks them colorful)!

Homework issues: scope – global solution

counter = 0
def count_up():

global counter
counter = counter + 1

count_up()
print(counter)

Output:

1

4

Homework issues: scope – global solution

counter = 0
def count_up():

global counter
counter = counter + 1

count_up()
print(counter)

Output:

1

20
17

-0
4-

26
Collections and File I/O

Homework issues: scope – global solution

It is not really cool to use variables as globals (there might be situations
where it’s necessary, but try to avoid it).

Better is to use a local solution.

Homework issues: scope – local solution

def count_up(counter):
return counter + 1

counter = 0
counter = count_up(counter)
print(counter)

Output:

1

5

Homework issues: scope – while

counter = 0
def add10(number):

while counter < 10:
number += 1
counter += 1

return number

print(add10(2))

Output:

Traceback (most recent call last):
File "<string>", line 8, in <module>
File "<string>", line 3, in add10

UnboundLocalError: local variable 'counter' referenced before assignment6

Homework issues: scope – while

counter = 0
def add10(number):

while counter < 10:
number += 1
counter += 1

return number

print(add10(2))

Output:

Traceback (most recent call last):
File "<string>", line 8, in <module>
File "<string>", line 3, in add10

UnboundLocalError: local variable 'counter' referenced before assignment

20
17

-0
4-

26
Collections and File I/O

Homework issues: scope – while

This won’t work, but it’s also probably not what was meant to work.

If you use a counter inside a function, you in general want it to be reset
each time you call that function – so it should go inside.

Homework issues: scope – while

def add10(number):
counter = 0
while counter < 10:

number += 1
counter += 1

return number

print(add10(2))

Output:

12

7

Homework remark: comparison with True

def fizz(number):
return number % 3 == 0

if fizz(3) == True:
print('fizz')

if fizz(3):
print('fizz')

Output:

fizz
fizz

8

Homework remark: comparison with True

def fizz(number):
return number % 3 == 0

if fizz(3) == True:
print('fizz')

if fizz(3):
print('fizz')

Output:

fizz
fizz20

17
-0

4-
26

Collections and File I/O

Homework remark: comparison with True

== True is never needed, you are always checking for True!

Recursion

def count_to_0(current):
if current < 0:

return
print(current, end=', ')
count_to_0(current - 1)

count_to_0(10)

Output:

10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0,

9

Recursive addition

Consider two baskets of apples. How can we model putting all into
the same basket?

Let’s do a live example!

10

Recursive addition – solution

def add(left, right):
if right == 0:

return left
return add(left + 1, right - 1)

print(add(5, 3))

Output:

8

11

Function arguments – positional

def function(arg0, arg1='default'):
print(arg0, arg1)

function(0, 1)
function(0)
function(arg1=1, arg0=0)

Output:

0 1
0 default
0 1

12

Function arguments – positional

def function(arg0, arg1='default'):
print(arg0, arg1)

function(0, 1)
function(0)
function(arg1=1, arg0=0)

Output:

0 1
0 default
0 120

17
-0

4-
26

Collections and File I/O

Function arguments – positional

• Positional arguments are the “normal” way we already discussed to
provide variables.

• They always go first, followed by positional arguments with default
values.

• A default value is always used if no other value is provided.
• It is possible to use arguments by their names – the order does not

matter.

Function arguments – arbitrary argument lists

def function(*args):
print(args)

function(1, 2, 3)

Output:

(1, 2, 3)

13

Function arguments – arbitrary argument lists

def function(*args):
print(args)

function(1, 2, 3)

Output:

(1, 2, 3)

20
17

-0
4-

26
Collections and File I/O

Function arguments – arbitrary argument lists

• Argument lists can not be used by their names.
• There can only be one argument list, as it would otherwise be

indistinguishable to which argument list each argument belongs.
• The notation (1, 2, 3) is new, we will come back to it in a few

slides.

Function arguments – keyword arguments

def function(**kwargs):
print(kwargs)

function(arg0=0, mug='tea cup', animal='platypus')

Output:

{'arg0': 0, 'mug': 'tea cup', 'animal': 'platypus'}

14

Function arguments – keyword arguments

def function(**kwargs):
print(kwargs)

function(arg0=0, mug='tea cup', animal='platypus')

Output:

{'arg0': 0, 'mug': 'tea cup', 'animal': 'platypus'}

20
17

-0
4-

26
Collections and File I/O

Function arguments – keyword arguments

• Keyword arguments can be captured using the double asterisk
notation.

• They are stored in a dictionary.

Tuples, lists, dictionaries, sets

Python offers four basic collection types:

• Tuples: (1, 2, 'hello', 2.3)
• Lists: [1, 2, 'hello', 2.4]
• Dictionaries: {'a': 1, 'b': 2}
• Sets: {1, 2, 'hello'}

15

Tuples, lists, dictionaries, sets

Python offers four basic collection types:

• Tuples: (1, 2, 'hello', 2.3)
• Lists: [1, 2, 'hello', 2.4]
• Dictionaries: {'a': 1, 'b': 2}
• Sets: {1, 2, 'hello'}

20
17

-0
4-

26
Collections and File I/O

Tuples, lists, dictionaries, sets

They are all iterables.

Remember: Strings are iterables as well.

Tuples

my_fruits = ('apple', 'pear', 'banana')
print(my_fruits)

Output:

('apple', 'pear', 'banana')

16

Tuples

my_fruits = ('apple', 'pear', 'banana')
print(my_fruits)

Output:

('apple', 'pear', 'banana')

20
17

-0
4-

26
Collections and File I/O

Tuples

Tuples are immutable, that means they are copied when we assign them to
another variable.

Tuples are sorted the way they are created.

Tuple functions: len

my_fruits = ('apple', 'pear', 'banana')
print(len(my_fruits))

Output:

3

17

Tuple functions: indexing

my_fruits = ('apple', 'pear', 'banana')
print(my_fruits[1])

for i in range(len(my_fruits)):
print(my_fruits[i], end=' ')

Output:

pear
apple pear banana

18

Tuple functions: index

my_fruits = ('apple', 'pear', 'banana')
print(my_fruits.index('pear'))

Output:

1

19

Tuple functions: merging

my_fruits = ('apple', 'pear', 'banana')
my_fruits = my_fruits + ('strawberry',)
print(my_fruits)

Output:

('apple', 'pear', 'banana', 'strawberry')

20

Tuple functions: merging

my_fruits = ('apple', 'pear', 'banana')
my_fruits = my_fruits + ('strawberry',)
print(my_fruits)

Output:

('apple', 'pear', 'banana', 'strawberry')

20
17

-0
4-

26
Collections and File I/O

Tuple functions: merging

We can check the documentation or help(tuple) for more information
about functions.

Lists

my_fruits = ['apple', 'pear', 'banana']
print(my_fruits)

Output:

['apple', 'pear', 'banana']

21

Lists are slightly different than tuples

my_fruits = ['apple', 'pear', 'banana']
your_fruits = my_fruits
your_fruits.append('strawberry')
print(my_fruits)
print(your_fruits)

Output:

['apple', 'pear', 'banana', 'strawberry']
['apple', 'pear', 'banana', 'strawberry']

22

Lists are slightly different than tuples

my_fruits = ['apple', 'pear', 'banana']
your_fruits = my_fruits
your_fruits.append('strawberry')
print(my_fruits)
print(your_fruits)

Output:

['apple', 'pear', 'banana', 'strawberry']
['apple', 'pear', 'banana', 'strawberry']

20
17

-0
4-

26
Collections and File I/O

Lists are slightly different than tuples

Lists are mutable, which means that we only assign a reference to the
object to our variables – references both point to the same instance. Thus,
we modify both unless we explicitly “copy” the list.

They are also stored sorted.

List functions: insert

fruits = ['apple', 'pear', 'banana']
fruits.insert(1, 'avocado')
print(fruits)

Output:

['apple', 'avocado', 'pear', 'banana']

23

List functions: remove

fruits = ['apple', 'pear', 'banana']
fruits.remove('pear')
print(fruits)

Output:

['apple', 'banana']

24

List functions: pop

fruits = ['apple', 'pear', 'banana']
last = fruits.pop()
print(fruits, last)

Output:

['apple', 'pear'] banana

25

List functions: pop

fruits = ['apple', 'pear', 'banana']
last = fruits.pop()
print(fruits, last)

Output:

['apple', 'pear'] banana

20
17

-0
4-

26
Collections and File I/O

List functions: pop

It also supports the same as tuples: len(my_fruits),
my_fruits.index('pear'), and my_fruits + ['strawberry'],
indexing, etc.

Dictionaries

my_foods = {'fruit': 'apple', 'vegetable': 'carrot'}
print(my_foods)

Output:

{'fruit': 'apple', 'vegetable': 'carrot'}

26

Dictionaries

my_foods = {'fruit': 'apple', 'vegetable': 'carrot'}
print(my_foods)

Output:

{'fruit': 'apple', 'vegetable': 'carrot'}

20
17

-0
4-

26
Collections and File I/O

Dictionaries

Dictionaries are also mutable.

In general they are stored in the order they are created but it is not
guaranteed, so don’t rely on it!

Dictionary functions: keys and values

my_foods = {'fruit': 'apple', 'vegetable': 'carrot'}
print(my_foods.keys())
print(my_foods.values())
print(my_foods.items())

Output:

dict_keys(['fruit', 'vegetable'])
dict_values(['apple', 'carrot'])
dict_items([('fruit', 'apple'), ('vegetable', 'carrot')])

27

Dictionary functions: indexing

my_foods = {'fruit': 'apple', 'vegetable': 'carrot'}
print(my_foods['fruit'])

Output:

apple

28

Dictionary functions: adding values

my_foods = {'fruit': 'apple', 'vegetable': 'carrot'}
my_foods['soup'] = 'potato'
print(my_foods)

Output:

{'fruit': 'apple', 'vegetable': 'carrot', 'soup': 'potato'}

29

Dictionary functions: pop

my_foods = {'fruit': 'apple', 'vegetable': 'carrot'}
my_foods.pop('fruit')
print(my_foods)

Output:

{'vegetable': 'carrot'}

30

Sets

my_meals = {'lunch', 'dinner', 'dinner'}
print(my_meals)

Output:

{'lunch', 'dinner'}

31

Sets

my_meals = {'lunch', 'dinner', 'dinner'}
print(my_meals)

Output:

{'lunch', 'dinner'}

20
17

-0
4-

26
Collections and File I/O

Sets

Sets are unordered and have unique values. They also support some set
operations. However, they are not that often used, although they are quite
useful!

Set operations

food_a = {'steak', 'apple', 'cauliflower', 'broccoli'}
food_b = {'broccoli', 'cauliflower', 'bell pepper'}
print(food_a & food_b)
print(food_a | food_b)
print(food_a.difference(food_b))

Output:

{'cauliflower', 'broccoli'}
{'cauliflower', 'apple', 'steak', 'bell pepper', 'broccoli'}
{'apple', 'steak'}

32

Iteration over tuples, lists, and sets

fruits = ['apple', 'pear', 'banana']
for fruit in fruits:

print(fruit, end=', ')

Output:

apple, pear, banana,

33

Iteration over tuples, lists, and sets

fruits = ['apple', 'pear', 'banana']
for fruit in fruits:

print(fruit, end=', ')

Output:

apple, pear, banana,

20
17

-0
4-

26
Collections and File I/O

Iteration over tuples, lists, and sets

It works exactly the same way for tuples and sets.

Iteration over tuples, lists, and sets, with index

fruits = ['apple', 'pear', 'banana']
for i, fruit in enumerate(fruits):

print(i, fruit, sep=':', end=', ')

Output:

0:apple, 1:pear, 2:banana,

34

Iteration over parts of tuples, lists, and sets

fruits = ['apple', 'pear', 'banana']
for fruit in fruits[1:]:

print(fruit, end=', ')

Output:

pear, banana,

35

Iteration over dictionaries

food = {'start': 'soup', 'main': 'pizza',
'dessert': 'ice cream'}

for key in food.keys():
print(key, end=', ')

Output:

start, main, dessert,

36

Iteration over dictionaries – with values

food = {'start': 'soup', 'main': 'pizza',
'dessert': 'ice cream'}

for key, value in food.items():
print(key, value, end=', ', sep=':')

Output:

start:soup, main:pizza, dessert:ice cream,

37

Iteration over dictionaries – with values

food = {'start': 'soup', 'main': 'pizza',
'dessert': 'ice cream'}

for key, value in food.items():
print(key, value, end=', ', sep=':')

Output:

start:soup, main:pizza, dessert:ice cream,

20
17

-0
4-

26
Collections and File I/O

Iteration over dictionaries – with values

For dictionaries we have to define what we want to iterate over.

By default the keys are used.

Nested collections

menu = {'main': ['pizza', 'pasta'],
'dessert': [

{'ice cream': ['chocolate', 'vanilla']},
'mousse au chocolat'

]
}

print(menu['dessert'][1])

Output:

mousse au chocolat

38

Function arguments and collections

Write a function calculator. It takes a list of arguments and
performs the operation provided with the keyword operation on all
numbers to return one result. Implement it for the operations +, -,
*, /. If no operation (or an invalid one) is provided, return the first
number.

Example inputs Result

calculator(1, 2, 3, operation='+') 6
calculator(2, 4, 8, operation='*') 64
calculator(3, 2, operation='-') 1
calculator(1, 2, 3, 4, 5, 6, 7, operation='+') 28
calculator(4, 2, 7) 4
calculator(4, 2, 7, operation='x') 4

39

Function arguments and collections - solution

def calculator(*args, **kwargs):
result = args[0]
if 'operation' in kwargs.keys():

for arg in args[1:]:
if kwargs['operation'] == '+':

result = result + arg
etc.

return result
print(calculator(1, 2, 3, operation='+'))

Output:

6

40

I/O

IO or I/O or similar abbreviations usually stand for:

Input and Output

41

I/O

IO or I/O or similar abbreviations usually stand for:

Input and Output

20
17

-0
4-

26
Collections and File I/O

I/O

Handled by (data) streams.

We already used one: the standard output stream (“stdout”)

Input and output

name = input('Who are you? ')
print('Hello ' + name + '!')

Output:

Who are you? Basti
Hello Basti!

42

Standard output stream

print(*objects, sep=' ', end='\n',
file=sys.stdout, flush=False)

Print objects to the text stream file, separated by sep
and followed by end. sep, end and file, if present, must
be given as keyword arguments.

(Python Documentation, Python Software Foundation 2017,
https://docs.python.org/3/library/functions.html#print)

43

Standard output stream

print(*objects, sep=' ', end='\n',
file=sys.stdout, flush=False)

Print objects to the text stream file, separated by sep
and followed by end. sep, end and file, if present, must
be given as keyword arguments.

(Python Documentation, Python Software Foundation 2017,
https://docs.python.org/3/library/functions.html#print)

20
17

-0
4-

26
Collections and File I/O

Standard output stream

• You can ignore the flush parameter: some streams first collect data
(buffering) and then write it (flush).

• We will now try another stream for file – the default is
sys.stdout, which means to just print it to the terminal.

print to file

my_lottery_numbers = [21, 8, 19, 9, 1, 22]
with open('04_CollectionsFileIO/code/lottery.txt', \

'w') as lottery_file:
print(my_lottery_numbers, file=lottery_file)

Output:

File: lottery.txt

[21, 8, 19, 9, 1, 22]

44

print to file

my_lottery_numbers = [21, 8, 19, 9, 1, 22]
with open('04_CollectionsFileIO/code/lottery.txt', \

'w') as lottery_file:
print(my_lottery_numbers, file=lottery_file)

Output:

File: lottery.txt

[21, 8, 19, 9, 1, 22]20
17

-0
4-

26
Collections and File I/O

print to file

File names: try to use relative file names so that everyone can use your
code.

File modes: the letter after the file name is the mode. It can be one of:

• write (overwrites/creates)
• read (read-only)
• append (updates/creates)
• add + to open for read and write (e.g. r+)
• and some more

read/write to/from file

my_lottery_numbers = [21, 8, 19, 9, 1, 22]
with open('04_CollectionsFileIO/code/lottery.txt', \

'w+') as lottery_file:
lottery_file.write(my_lottery_numbers)
result = lottery_file.read()

print(result)

Output:

Traceback (most recent call last):
File "<string>", line 4, in <module>

TypeError: write() argument must be str, not list

45

read/write to/from file

my_lottery_numbers = [21, 8, 19, 9, 1, 22]
with open('04_CollectionsFileIO/code/lottery.txt', \

'w+') as lottery_file:
lottery_file.write(my_lottery_numbers)
result = lottery_file.read()

print(result)

Output:

Traceback (most recent call last):
File "<string>", line 4, in <module>

TypeError: write() argument must be str, not list20
17

-0
4-

26
Collections and File I/O

read/write to/from file

You might find other sources on the internet using different notations,
e.g. with “open” and “close” for files – just use with unless you can’t.
Because with opens the file and automatically closes it for you!

Closing files is important because sometimes other processes are not
allowed to access “used” files, even if you don’t really use them anymore.

Cast to the rescue

my_lottery_numbers = [21, 8, 19, 9, 1, 22]
with open('04_CollectionsFileIO/code/lottery.txt', \

'w+') as lottery_file:
lottery_file.write(str(my_lottery_numbers))
result = lottery_file.read()

print(result)

Output:

46

Seeking the beginning

my_lottery_numbers = [21, 8, 19, 9, 1, 22]
with open('04_CollectionsFileIO/code/lottery.txt', \

'w+') as lottery_file:
lottery_file.write(str(my_lottery_numbers))
lottery_file.seek(0)
result = lottery_file.read()

print(result)
print(type(result))

Output:

[21, 8, 19, 9, 1, 22]
<class 'str'>

47

Reconstructing the list properly

with open('04_CollectionsFileIO/code/lottery.txt', \
'r') as lottery_file:

lottery_raw = lottery_file.read()
This is black python magic! Let's discuss it
numbers = [int(num) for num in \

lottery_raw[1:-1].split(',')]
print(numbers)
print(type(numbers))

Output:

[21, 8, 19, 9, 1, 22]
<class 'list'>

48

Reconstructing the list properly

with open('04_CollectionsFileIO/code/lottery.txt', \
'r') as lottery_file:

lottery_raw = lottery_file.read()
This is black python magic! Let's discuss it
numbers = [int(num) for num in \

lottery_raw[1:-1].split(',')]
print(numbers)
print(type(numbers))

Output:

[21, 8, 19, 9, 1, 22]
<class 'list'>20

17
-0

4-
26

Collections and File I/O

Reconstructing the list properly

[int(num) for num in \

lottery_raw[1:-1].split(',')]

is equivalent to (but shorter to write)

lottery_no_brackets = lottery_raw[1:-1]

lottery_strings = lottery_no_brackets.split(',')

lottery_numbers = []

for num in lottery_strings:

lottery_numbers.append(int(num))

This is called list comprehension.

Reading a file line by line

with open('04_CollectionsFileIO/code/names.txt', \
'r') as names_file:

names = names_file.read().splitlines()
print(names)

Output:

['Graham Chapman', 'John Cleese', 'Terry Gilliam', 'Eric Idle', 'Terry Jones', 'Michael Palin']

49

Reading a file line by line

with open('04_CollectionsFileIO/code/names.txt', \
'r') as names_file:

lastnames = []
for name in names_file:

first_and_last = name.split()
lastnames.append(first_and_last[1])

print(lastnames)

Output:

['Chapman', 'Cleese', 'Gilliam', 'Idle', 'Jones', 'Palin']

50

Your fourth homework

• Do some simple vector algebra with loops.
• Play hangman to master input and output!

51

The last slide

Figure 1: Master of the Universe (Cham 2007)

52

References

Cham, Jorge. 2007. “Master of the Universe.” PhD – Piled Higher
and Deeper, November.

Python Software Foundation. 2017. Python 3.6.0 Documentation.
3.6.0 ed. Beaverton, Oregon, USA: Python Software Foundation.

53

