
Exercise Sheet 04 – File I/O and Algorithms

Sebastian Höffner Aline Vilks

Deadline: Mon, 1 May 2017 08:00 +0200

Submission

By the end of this sheet you will have a number of different files to submit. In
Stud.IP you will have a directory for your own group, please upload them there.
It is easier for you if you just archive (preferably zip) all files and upload your
archive, but it is okay if you upload them one by one.

Exercise 1: Vector & matrix mathematics

We can model mathematical vectors with tuples and lists. However, as Python
is not designed to do vector math with lists nor tuples, we have to define some
functions ourselves. To be able to do some basic vector math, write a script
vector_math.py which defines the following functions:

a) def add(x, y): Adds x and y, such that the result z follows zi = xi + yi.
b) def sub(x, y): Subtracts x and y, such that the result z follows zi =

xi − yi.
c) def dot(x, y): Calculates the scalar (dot) product of two vectors x and

y. The scalar product < x, y > is defined as < x, y >=
N∑

i=0
xiyi.

d) def pdist(x, y, p=2): Calculates the distance between two vectors x

and y over a given p-norm. It is defined as dp(x, y) = p

√
N∑

i=0
(xi − yi)p,

where p ≥ 1.
e) def angle(x, y): Calculates the angle between two vectors x and y. The

angle can be found by using an alternative definition of the scalar product:
< x, y >= ‖x‖ ‖y‖ cos θ. If you solve it for θ, you find the angle between x
and y.

You can assume that all vectors are of the same length.

1



Test your implementations using the following inputs and results. Note that it
is fine to return lists or tuples, use what you feel comfortable with.

Use a = [1, 2, 3], b = [4, 5, 6], c = [0, 1, 0, 0, 1], d = [1.5, 2.5,
3.5, 4.5, 5.5].

Call Result
add(a, b) [5, 7, 9]
add(b, a) [5, 7, 9]
sub(a, b) [-3, -3, -3]
dot(c, d) 8.0
pdist(a, b) approx. 5.2
pdist(c, d, 4) approx. 5.6
angle(a, b) approx. 0.23

You can try out other values as well.

Exercise 2: Mastering I/O: Hangman

Let’s implement a little game. In Hangman one person (in our case the computer)
picks a random word and tells us how many letters there are, e.g. for hello it
would tell us: _____. Now your job is to guess the word, letter by letter. So
if you would guess e, the computer would reveal _e___. If you then guessed
l, the result would be _ell_. Traditionally, for each wrong letter guessed, a
player would get another stroke of the little hangman (see Figure 1). Eventually
the stick figure will hang – or you solve the word and win! Since it’s hard to
visualize the stick figure on the terminal, you might want to just use a counter.

Task

Write a file hangman_game.py which implements a game of hangman. In the
accompanying *.zip archive there is a file called hangman_words.txt which
you should use (but you can change it as much as you like) to read the list of
possible words.

Example pseudocode

Set number of misses
Read possible words
Pick one word
Prepare guess word with underscores

2



Figure 1: Example hangman game (McGeddon, Wikipedia, Public Domain)

3



Present user with the "rules"
While not guessed and more than 0 misses left:

Present current game state
Get letter from user input
If letter exists in chosen word:

Update guess word
If guessed:

Win
Else:

Update list of failures and misses
If no misses left:

Lose

Hints

Strings are immutable, so you can not do something like this:
a = 'hello'
a[3] = 'b'

Instead, try to represent the guess word as a list filled with underscores, like
this:
word = 'hello'
guess_word = ['_', '_', '_', '_', '_']

Then, whenever a letter is guessed, check if it is inside the word, and if so,
update the guess_word accordingly (this code snippet is not really useful, but
remember the keyword in):
if 'l' in word:

guess_word[word.index('l')] = 'l'

Similarly, to check if the game is won, you just need to see if there are still _s
inside the list.

Try to split your code into several function which only do small bits, e.g. write a
function which checks if you won, one which prints the current game state, one
which reads in the file, etc.

4


	Submission
	Exercise 1: Vector & matrix mathematics
	Exercise 2: Mastering I/O: Hangman
	Task
	Example pseudocode
	Hints


