
Variables, Assignments, and Functions
Basic Programming in Python

Sebastian Höffner Aline Vilks
Wed, 12 Apr 2017

1

Python scripting

• Scripts make code reusable
• From now on, write all your homework in scripts
• You can still explore using the interactive interpreter
• To replay your code: python my_code.py – or just click the

play button in spyder!

2

Python scripting

• Scripts make code reusable
• From now on, write all your homework in scripts
• You can still explore using the interactive interpreter
• To replay your code: python my_code.py – or just click the

play button in spyder!

20
17

-0
4-

12
Variables, Assignments, and Functions

Python scripting

During the first homework, you copied all your commands into files.

You can run them, share them, modify them.

Common mistakes & bonus solutions

• Please name your files as we suggest, if we give you some
names. nicolas.py, nicholas.docx, or Nicholas.py are
not the same as nicholas.py.

• For the bonus questions we needed escaping, that means we
can write:

print("This is \"interesting\".")

Output:

This is "interesting".

3

Some conventions

• No spaces between function names and parentheses, but after
commas: function_name(arg0, arg1)

• Spaces around math operators (we learn more about them
today): a * b

• At least one, better two lines after your imports:

import turtle

turtle.shape('turtle')
turtle.done()

• imports should be the first statements in your files.

4

Variable vs. value

• Variables are placeholders
• Values are the contents

5

Variable vs. value: Random mug

Figure 1: Mug of Tea (Factorylad, Wikimedia Commons)

6

Variable vs. value: Mensa mug

Figure 2: Mug of Hot Chocolate (own picture)
7

Example: Liquids

mug = 'mensa mug'
liquid_in_mug = 'hot chocolate'

print('My', mug, 'contains', liquid_in_mug)

Output:

My mensa mug contains hot chocolate

8

Example: Liquids

mug = 'mensa mug'
liquid_in_mug = 'hot chocolate'

print('My', mug, 'contains', liquid_in_mug)

Output:

My mensa mug contains hot chocolate

20
17

-0
4-

12
Variables, Assignments, and Functions

Example: Liquids

You might know this concept from Logics, Mathematics, or Statistics
classes.

A variable is thus just a placeholder for a concept, while the value is its
realization.

Example: Names

name_one = 'Aline'
name_two = 'Basti'
greeting = 'Good morning,'

print(greeting, name_one)
print(greeting, name_two)

Output:

Good morning, Aline
Good morning, Basti

9

Example: Variable to variable assignment

my_fruit = 'Raspberry'
your_fruit = my_fruit

print(my_fruit)
print(your_fruit)

Output:

Raspberry
Raspberry

10

Example: Variable to variable assignment

my_fruit = 'Raspberry'
your_fruit = my_fruit
my_fruit = 'Blueberry'

print(my_fruit)
print(your_fruit)

Output:

Blueberry
Raspberry

11

Example: Variable to variable assignment

my_fruit = 'Raspberry'
your_fruit = my_fruit
my_fruit = 'Blueberry'

print(my_fruit)
print(your_fruit)

Output:

Blueberry
Raspberry

20
17

-0
4-

12
Variables, Assignments, and Functions

Example: Variable to variable assignment

We can copy over one variable to another variable.

However, be careful with assigning variables to variables, we will later learn
that sometimes we hold the same fruit, not a copy!

Variables and assignments

A notorious example for a bad idea was the choice of the
equal sign to denote assignment.1

1Wirth (2006): Good Ideas, Through the Looking Glass.

12

Assignment = vs. equality =

a = b (in math) is not the same as a = b (in code)

13

Assignment = vs. equality =

a = b (in math) is not the same as a = b (in code)

20
17

-0
4-

12
Variables, Assignments, and Functions

Assignment = vs. equality =

• Mathematical equality works different than assignments
• In maths, both sides of the equality sign have to be equal
• In programming, after “assigning b to a”, a has the value of b
• It does not matter what value a or b had before (in python)

Variables and math

a = 3
b = 5
c = 2
c = a * b
print(c)

14

Variables and math

a = 3
b = 5
c = 2
c = a * b
print(c)

Output:

15

15

Math operations

There are lots of math operators:

+ Addition: 5 + 3
- Subtraction: 5 - 3
* Multiplication: 5 * 3
/ Division: 5 / 3
% Modulo 5 % 3

16

Math operations

There are lots of math operators:

+ Addition: 5 + 3
- Subtraction: 5 - 3
* Multiplication: 5 * 3
/ Division: 5 / 3
% Modulo 5 % 3

20
17

-0
4-

12
Variables, Assignments, and Functions

Math operations

They all work just as we are used from mathematics.

Try out:

• 5 + 3 * 2
• (5 + 3) * 2
• 5 - 2 + 3
• 5 - (2 + 3)
• etc.

Recap: modulo

You have 13 apples and want to share between you and your three
friends when you head out for a hike. But since the apples become
brown if you slice them, you only take whole apples with you. How
many apples do you leave at home?

13 : 4 = 3R1 (1)
12 (2)
1 (3)

17

More math operators

What do these operators do?

// ?: 5 // 3
** ?: 5 ** 3

18

More math operators

What do these operators do?

// ?: 5 // 3
** ?: 5 ** 3

20
17

-0
4-

12
Variables, Assignments, and Functions

More math operators

// is the integer division (floors the value / cuts off the remainder)

** is exponentiation

Python handles very large numbers

Try:

>>> 2394 ** 23
524632703914969817787572010020716592751590741840923973931630849304356804624384
>>> 5.331 ** 413
1.485887341202073e+300

19

Roots

• Take the square root of 64 (
√
64)2.

• Take the cube root of 8 (3√8).

2Remember that p√x = x
1
p .

20

Roots

• Take the square root of 64 (
√
64)2.

• Take the cube root of 8 (3√8).

2Remember that p√x = x
1
p .20

17
-0

4-
12

Variables, Assignments, and Functions

Roots

x = 64
sqr t_x = x ∗∗ (1 / 2)
p r i n t (sq r t_x)
y = 8
cbrt_y = y ∗∗ (1 / 3)
p r i n t (cbr t_y)

Operator precedence and parentheses

• What is x : x = 5 · 4 + 1
• What is y : y = 5 · (4 + 1)

21

Operator precedence and parentheses

• What is x : x = 5 · 4 + 1
• What is y : y = 5 · (4 + 1)

20
17

-0
4-

12
Variables, Assignments, and Functions

Operator precedence and parentheses

Multiplication has a higher precedence than addition.

Parentheses overwrite precedence.

Operator Precedences

Strength3 Operators Explanations

strongest (...) Parentheses4

stronger ** Exponentiation5

strong +x, -x Positive/Negative numbers
weak *, /, //, % Multiplication, (Integer) Division, Modulo
weaker +, - Addition, Subtraction
weakest = Assignment (not equality!)

3Equally strong operators are executed left to right, unless overwritten with
parentheses.

4Parentheses (and other brackets) are resolved from inner to outer.
5Exception: ** is weaker than -x on its right hand side (i.e. in the exponent).

22

Square roots, again.

import math

a = 5
sqrt_a = math.sqrt(a)
print(sqrt_a)

Output:

2.23606797749979

23

Square roots, again.

import math

a = 5
sqrt_a = math.sqrt(a)
print(sqrt_a)

Output:

2.23606797749979

20
17

-0
4-

12
Variables, Assignments, and Functions

Square roots, again.

• There are lots of useful math functions already implemented in
Python.

• Search the web for python 3 math. Do it now!
• All functions listed there are available by calling

math.function(...) after import math.
• math is a module

https://docs.python.org/3/library/math.html

Let’s solve a “real world” problem!

In the beat ‘em up game Castle Crashers, four heroic knights are on
an epic journey to save four princesses who were kidnapped by a
dark wizard. During the knights’ journey they fight many evil-doers.

Figure 3: Castle Crashers, Screenshot (The Behemoth 2012) 24

Fighting for princesses

The knights have different attributes and values assigned to them:

Attribute Value

Level (L) 31
Strength (S) 20

When they hit an enemy with a strong attack, damage d is
calculated by the following formula (Zauron 2008):

d(L, S) = b5 + 1.15S + 0.1Lc

1. Calculate the damage a knight deals with a strong attack.
2. Assume one knight is a bit stronger than the others: with level

32 he got a strength value of 21. How much damage does he
deal with a single strong attack?

25

Fighting for princesses

The knights have different attributes and values assigned to them:

Attribute Value

Level (L) 31
Strength (S) 20

When they hit an enemy with a strong attack, damage d is
calculated by the following formula (Zauron 2008):

d(L, S) = b5 + 1.15S + 0.1Lc

1. Calculate the damage a knight deals with a strong attack.
2. Assume one knight is a bit stronger than the others: with level

32 he got a strength value of 21. How much damage does he
deal with a single strong attack?20

17
-0

4-
12

Variables, Assignments, and Functions

Fighting for princesses

import math

l e v e l = 31
s t r e n g t h = 20

damage = math . f l o o r (5 + 1.15 ∗ s t r e n g t h + 0 .1 ∗ l e v e l)

p r i n t (damage)
Or : (5 + 1.15 ∗ s t r e n g t h + 0 .1 ∗ l e v e l) // 1

1. 31
2. 32

Fighting for princesses solution

File: castlecrashers.py

import math

level = 31
strength = 20

damage = math.floor(5 + 1.15 * strength + 0.1 * level)

print(damage)
Or: (5 + 1.15 * strength + 0.1 * level) // 1

Output:

31
26

Reusing code: Functions

How did you change the code to solve the second exercise?

27

Reusing code: Functions

How did you change the code to solve the second exercise?

20
17

-0
4-

12
Variables, Assignments, and Functions

Reusing code: Functions

Split your code into small parts which solve one task.

• This follows a pattern called DNRY (Do Not Repeat Yourself)
• Fewer mistakes/easy to fix: only need to change them in one place
• We will learn later: It’s easier to test
• Makes code reusable

Reusing code: Functions

def strong_attack_damage(level, strength):
return (5 + 1.15 * strength + 0.1 * level) // 1

level = 31
strength = 20
damage = strong_attack_damage(level, strength)
print(damage)

Output:

31.0

28

Functions – not yet explained

def combine(argument, argument1):
result = argument + argument1
return result

result1 = combine('Hello', 'World')
result = combine(1, 4)
print(result)

Output:

5

29

Functions – not yet explained

def combine(argument, argument1):
result = argument + argument1
return result

result1 = combine('Hello', 'World')
result = combine(1, 4)
print(result)

Output:

5

20
17

-0
4-

12
Variables, Assignments, and Functions

Functions – not yet explained

• result1 is HelloWorld

Functions – explained

"def" is the function keyword
followed by a name
def combine(argument, argument1):

this is the function body: indented!
result = argument + argument1
return result # you can return results

call it:
result1 = combine('Hello ', 'World')
result = combine(1, 4)
print(result)

Output:

5 30

Functions – explained

"def" is the function keyword
followed by a name
def combine(argument, argument1):

this is the function body: indented!
result = argument + argument1
return result # you can return results

call it:
result1 = combine('Hello ', 'World')
result = combine(1, 4)
print(result)

Output:

5

20
17

-0
4-

12
Variables, Assignments, and Functions

Functions – explained

• Watch out for indentation
• Take care of enough whitespace around a function (at least one line

above and below)
• You can have arbitrarily many arguments
• We will discuss functions in much more details soon, but for now this

should be sufficient

Your second homework

• Calculate the area of different St. Nicholas’ houses. Use the
random module to generate useful random variables.

• Extend the repertoire of the four Castle Crasher knights and let
two of them fight.

31

The last slide

Figure 4: happy father’s day (Climo 2014)
32

References

Climo, Liz. 2014. “Happy Father’s Day.” Hi, I’m Liz, June.

The Behemoth. 2012. “Screenshot 7.” Castle Crashers.

Wirth, Niklaus. 2006. “Good Ideas, Through the Looking Glass.”
IEEE Computer 39 (1): 28–39.

Zauron. 2008. “Character Guide.” GameFAQs: Castle Crashers,
September.

33

